Nếu \(\overline{ab}\)cộng với một bội của 43 là một số chính phương có hai chữ số thì \(\overline{ab}\)là......
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số chính phương có hai chữ số là: 16, 25, 36, 49, 64, 81
Vì nếu ab cộng với một bội số của 43 thì được một số chính phương có hai chữ số nên bội của 43 phải nhỏ hơn 81
Bội của 43 nhỏ hơn 81 gồm: 0, 43
Nếu ab cộng với số 0 , là bội...
Số chính phương có hai chữ số là: 16, 25, 36, 49, 64, 81
Vì nếu ab cộng với một bội số của 43 thì được một số chính phương có hai chữ số nên bội của 43 phải nhỏ hơn 81
Bội của 43 nhỏ hơn 81 gồm: 0, 43
\(S=abc+bca+cab+ab+bc+ca\)
\(=100a+10b+c+100b+10c+a+100c+10a+b+10a+b+10b+c+10c+a\)
\(=122a+122b+122c\)
\(=122\left(a+b+c\right)\)
\(=61.2\left(a+b+c\right)\)
Vì 61 và 2 là các số nguyên tố nên để S là số chính phương thì trước hết a + b + c chia hết cho 61 và 2.
a + b + c > 0 ; mà a+b+c < 28; nên nó không thể chia hết cho 61.
Do đó S không thể là số chính phương.
vào đây nhé: Câu hỏi của phandangnhatminh - Toán lớp 7 - Học toán với OnlineMath
t i c k nhé!! 46457645774745756858768967969689088558768578769
\(\overline{abcd}⋮9\) (d là số nguyên tố)
\(\Rightarrow d\in\left\{3;5;7\right\}\)
mà \(\overline{abcd}\) là số chính phương
\(\Rightarrow d\in\left\{5\right\}\Rightarrow c\in\left\{2\right\}\)
\(\Rightarrow\overline{ab}\in\left\{12;20;30;56;72\right\}\)
mà \(\left\{{}\begin{matrix}a+b+c+d⋮9\\c+d=2+5=7\end{matrix}\right.\)
\(\Rightarrow\overline{ab}\in\left\{20;56\right\}\)
\(\Rightarrow\overline{abcd}\in\left\{2025;5625\right\}\)
Ta có : \(\overline{ab}-\overline{ba}=\) (10a +b) \(-\) (10b +a) \(=\) 10a + b \(-\) 10b \(-\) a \(=\) 9a \(-\) 9b
\(=\) 9(a\(-\)b) \(=\) 32(a\(-\)b)
=> a, b ∉ {1;2;3;4;5;6;7;8;9} => 1 ≤ a- b ≤ 8
Để \(\overline{ab}-\)\(\overline{ba}\) là số chính phương thì a – b = 1; 4
+) a – b = 1 (mà a > b) ta có các số \(\overline{ab}\) là : 98 ; 87 ; 76; 65; 54 ; 43; 32; 21
Vì \(\overline{ab}\) là số nguyên tố nên chỉ có số 43 thoả mãn
+) a – b = 4 (mà a > b) ta có các số \(\overline{ab}\) là : 95 ; 84 ; 73; 62; 51
Vì \(\overline{ab}\) là số nguyên tố nên chỉ có số 73 thoả mãn
Vậy có hai số thoả mãn điều kiện bài toán là 43 và 73