UCLN ( 2n+1 ; 6n+5)
giải thích rõ ràng thì mới tick
không trẻ lời chtt vì nó chưa chính xác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Gọi ƯCLN(2n+1,2n+3) = d (d thuộc N*)
=>2n+1 chia hết cho d và 2n+3 chia hết cho d
=>(2n+3)-(2n+1) chia hết cho d
=>2 chia hết cho d
=>d thuộc Ư(2)
Ta có: Ư(2)={1;2}
Vì 2n+1 và 2n+3 là số lẻ nên d không thể bằng 2
=>d=1
Vậy ƯCLN(2n+1,2n+3) = 1 (đpcm)
b)Gọi ƯCLN(2n+5,3n+7) = d (d thuộc N*)
=>2n+5 chia hết cho d và 3n+7 chia hết cho d
=>6n+15 chia hết cho d và 6n+14 chia hết cho d
=>(6n+15)-(6n+14) chia hết cho d
=>1 chia hết cho d
=>d thuộc Ư(1) =>d=1
Vậy ƯCLN(2n+5,3n+7) = 1 (đpcm)
a) Đặt: ƯCLN(2n+1,2n+3) = d
Ta có: 2n+1 \(⋮\)d và 2n+3 \(⋮\)d
\(\Rightarrow\)(2n+3) - (2n+1) \(⋮\)d
\(\Leftrightarrow\)2n+3 - 2n-1 \(⋮\)d
\(\Leftrightarrow\)2\(⋮\)d
Vì 2n+3 ko chia hết cho 2
Nên 1\(⋮\)d
\(\Leftrightarrow\)d=1
Vậy ƯCLN( 2n+1,2n+3) = 1(đpcm)
b) Đặt ƯCLN( 2n+5,3n+7 ) = d
Ta có: 2n+5 \(⋮\)d \(\Leftrightarrow\)3(2n+5) \(⋮\)d
\(\Leftrightarrow\)6n+15 \(⋮\)d
3n+7\(⋮\)d \(\Leftrightarrow\)2(3n+7) \(⋮\)d
\(\Leftrightarrow\)6n+14 \(⋮\)d
\(\Rightarrow\)(6n+15) - (6n+14)\(⋮\)d
\(\Leftrightarrow\)6n+15 - 6n - 14\(⋮\)d
\(\Leftrightarrow\)1\(⋮\)d
\(\Leftrightarrow\)d = 1
Vậy ƯCLN(2n+5,3n+7) = 1(đpcm)
Kb vs mk nha
gọi d là UCLN(2n+1;3n+1)
3(2n+1);2(3n+1) chia hết d
=>6n+3;6n+2 chia hết d
=>1 chia hết d
=>d=1
vậy UCLN(2n+ 1, 3n+ 1) là 1
Đề sai nhé bạn.
2n+1 không thể là ước của 3n+4 và đề cho là ucln của 3n+4 ???
Sửa đề r mình giải cho
Ai bt Địa ko giải hộ mìk ạ chiều mình thi rồi T.T
Câu 1 : Hãy thử suy đoán xem nhiệt độ ngày đêm sẽ diễn biến ntn , nếu giả sử Trái đất :
a) Quay chậm lại 24h thành 36h
b) Quay nhanh hơn 24h thành 36h
c) Ngừng quay
Ai nhanh mik giúp mìh vs ạ ...
ta lập biểu thưc vfhgjhkjggj
fhfhgjh;hjghg-gjgjh=ggrutrutiyỳjkjfgf[ỵt[tjrgtgfugeidgưeuđewvd76e
a.b.c.d.e.f.g=100
fsjshssiusksuusmsumsú,súksúksúlsusúkúlsú=shsjsk-sssskảy,hehhhugeywhoewugrfteocjnr;djfctta
ta lập luôn 1 biểu thức ậmkrgkfhrhfytf7eỷ6ềwỷwt9fuềe9re6dteudfudỷ4hd94
Gọi ƯCLN(2n+1;3n+1)=d
Ta có: 2n+1 chia hết cho d
3(2n+1) chia hết cho d
6n+3 chia hết cho d
có 3n+1 chia hết cho d
2(3n+1) chia hết cho d
6n+2 chia hết cho d
=>6n+3-(6n+2) chia hết cho d
(6n-6n)+(3-2) chia hết cho d
=>1 chia hết cho d hay d=1
Vậy ƯCLN(2n+1;3n+1)=d
Gọi d là ƯCLN(2n+1;3n+1) (d thuộc N*)
=>2n+1 chia hết cho d=>6n+3 chia hết cho d
=>3n+1 chia hết cho d=>6n+2 chia hết cho d
=>6n+3-6n-2 chia hết cho d
=>1 chia hết cho d
=>d=1
=>ƯCLN(2n+1;3n+1)=1
cho (2n+1,6n+5)=d
=>2n+1 chia hết cho d =>6n+3 chia het cho d
6n+5 chia het cho d
nên ta có: 6n+5 -(6n+3) chia het cho d
hay 6n+5- 6n - 3 chia het cho d
=> 2 chia het cho d
=> d E {1,2}
mà 2n+1, 6n+5 là số lẻ nên (2n+1, 6n+5)=1
tick cho mk nha