Viết phương trình tiếp tuyến của đồ thị (C): y=\(-\frac{1}{3}x^3-2x^2-3x+1\)
Biết tiếp tuyến có hệ số góc lớn nhất
_GIÚP MÌNH VỚIIII
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. PTTT của ĐTHS tại điểm $(x_0,y_0)$ là:
$y=y'(x_0)(x-x_0)+y_0$
$=(-x_0^2-4x_0-3)(x-x_0)+y_0$
Hệ số góc max $\Leftrightarrow -x_0^2-4x_0-3$ max
Mà:
$-x_0^2-4x_0-3=1-(x_0+2)^2\leq 1$ nên $-x_0^2-4x_0-3$ max bằng $1$ khi $x_0=-2$
Vậy PTTT cần tìm là:
$y=y'(-2)(x+2)+y(-2)=1(x+2)+\frac{5}{3}=x+\frac{11}{3}$
b.
Hệ số góc nhỏ nhất đâu đồng nghĩa với $y''(x_0)=0$ đâu bạn?)
Để pttt tại $x=x_0$ có hệ số góc min thì nghĩa là $f'(x_0)=-x_0^2-4x_0-3$ min
Mà $f'(x_0)$ không tồn tại min trên $\mathbb{R}$ nên không có pttt thỏa mãn.
Chọn C
- Ta có:
- Hệ số góc của tiếp tuyến đồ thị hàm số y = x 3 + 3 x 2 – 3 x là một giá trị của y’, nên hệ số góc nhỏ nhất là k = -6, ứng với hoành độ tiếp điểm là x = -1 ⇒ y = 5.
→ Phương trình tiếp tuyến là:
y = -6(x + 1) + 5, hay y = -6x - 1.
Ta có: y(1) = -3 , y(3) = 7
Từ đó ta có hai phương trình tiếp tuyến phải tìm là:
y + 3 = −5(x – 1) ⇔ y = −5x + 2
y – 7 = −5(x – 3) ⇔ y = −5x + 22
a)
b) Tịnh tiến (C) song song với trục Ox sang trái 1 đơn vị, ta được đồ thị (C1) của hàm số.
y = f(x) = − ( x + 1 ) 3 + 3(x + 1) + 1 hay f(x) = − ( x + 1 ) 3 + 3x + 4 (C1)
Lấy đối xứng (C1) qua trục Ox, ta được đồ thị (C’) của hàm số y = g(x) = ( x + 1 ) 3 − 3x – 4
c) Ta có: ( x + 1 ) 3 = 3x + m (1)
⇔ ( x + 1 ) 3 − 3x – 4 = m – 4
Số nghiệm của phương trình (1) là số giao điểm của hai đường :
y = g(x) = ( x + 1 ) 3 − 3x – 4 (C’) và y = m – 4 (d1)
Từ đồ thị, ta suy ra:
+) m > 5 hoặc m < 1: phương trình (1) có một nghiệm.
+) m = 5 hoặc m = 1 : phương trình (1) có hai nghiệm.
+) 1 < m < 5 , phương trình (1) có ba nghiệm.
d) Vì (d) vuông góc với đường thẳng:
nên ta có hệ số góc bằng 9.
Ta có: g′(x) = 3 ( x + 1 ) 2 – 3
g′(x) = 9 ⇔
Có hai tiếp tuyến phải tìm là:
y – 1 = 9(x – 1) ⇔ y = 9x – 8;
y + 3 = 9(x + 3) ⇔ y = 9x + 24.
\(y'=-x^2-4x-3=-\left(x+2\right)^2+1\le1\)
Dấu "=" xảy ra khi \(x=-2\)
\(\Rightarrow x_0=-2\) \(\Rightarrow y_0=\frac{5}{3}\)
Phương trình tiếp tuyến:
\(y=1\left(x+2\right)+\frac{5}{3}\Leftrightarrow y=x+\frac{11}{3}\)