\(\sqrt{13-4\sqrt{3}}-\sqrt{37-20\sqrt{3}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{37-20\sqrt{3}}+\sqrt{37+20\sqrt{3}}\)
\(=\sqrt{37-2\sqrt{300}}+\sqrt{37+2\sqrt{300}}\)
\(=\sqrt{\left(5-\sqrt{12}\right)^2}+\sqrt{\left(5-\sqrt{12}\right)^2}\)
\(=|5-\sqrt{12}|+|5+\sqrt{12}|\)
\(=5-\sqrt{12}+5+\sqrt{12}\)
\(=10\)
a)
Có:
\(2\sqrt{29}=\sqrt{4.29}=\sqrt{116}\\ 3\sqrt{13}=\sqrt{9.13}=\sqrt{117}\)
Vì \(\sqrt{117}>\sqrt{116}\) nên \(3\sqrt{13}>2\sqrt{29}\)
b)
Có:
\(\dfrac{5}{4}\sqrt{2}=\sqrt{\dfrac{25}{16}.2}=\sqrt{\dfrac{25}{8}}\)
\(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}=\sqrt{\dfrac{9}{4}.\dfrac{3}{2}}=\sqrt{\dfrac{27}{8}}\)
Do \(\sqrt{\dfrac{27}{8}}>\sqrt{\dfrac{25}{8}}\) nên \(\dfrac{3}{2}\sqrt{\dfrac{3}{2}}>\dfrac{5}{4}\sqrt{2}\)
c)
Có:
\(5\sqrt{2}=\sqrt{25.2}=\sqrt{50}\)
\(4\sqrt{3}=\sqrt{16.3}=\sqrt{48}\)
Vì \(\sqrt{50}>\sqrt{48}\) nên \(5\sqrt{2}>4\sqrt{3}\)
d)
Có:
\(\dfrac{5}{2}\sqrt{\dfrac{1}{6}}=\sqrt{\dfrac{25}{4}.\dfrac{1}{6}}=\sqrt{\dfrac{25}{24}}\)
\(6\sqrt{\dfrac{1}{37}}=\sqrt{36.\dfrac{1}{37}}=\sqrt{\dfrac{36}{37}}\)
lại có: \(\dfrac{25}{24}>\dfrac{36}{37}\)
\(\Rightarrow\dfrac{5}{2}\sqrt{\dfrac{1}{6}}>6\sqrt{\dfrac{1}{37}}\)
a) \(\sqrt{3+2\sqrt{2}}-\sqrt{3-2\sqrt{2}}=\sqrt{2}+1-\left(\sqrt{2}-1\right)=2\)
b) \(\dfrac{1}{\sqrt{3}-1}-\dfrac{1}{\sqrt{3}+1}=\dfrac{\sqrt{3}+1-\left(\sqrt{3}-1\right)}{3-1}=1\)
c) \(2\sqrt{5}-3\sqrt{45}+\sqrt{500}=2\sqrt{5}-9\sqrt{5}+10\sqrt{5}=3\sqrt{5}\)
d) \(\dfrac{1}{\sqrt{3}+\sqrt{2}}-\dfrac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}=\dfrac{1}{\sqrt{3}+\sqrt{2}}-\dfrac{\sqrt{3}\left(\sqrt{5}-\sqrt{4}\right)}{\sqrt{5}-2}=\dfrac{1}{\sqrt{3}+\sqrt{2}}-\sqrt{3}=\dfrac{1-\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}=\dfrac{1-3-\sqrt{6}}{\sqrt{3}+\sqrt{2}}=\dfrac{-2-\sqrt{6}}{\sqrt{3}+\sqrt{2}}=\dfrac{-\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{3}+\sqrt{2}}=-\sqrt{2}\)
e) \(\dfrac{1}{2+\sqrt{3}}-\dfrac{1}{2-\sqrt{3}}+5\sqrt{3}=\dfrac{2-\sqrt{3}-\left(2+\sqrt{3}\right)}{4-3}+5\sqrt{3}=-2\sqrt{3}+5\sqrt{3}=3\sqrt{3}\)
f) \(\sqrt{3}-\sqrt{4+2\sqrt{3}}=\sqrt{3}-\left(\sqrt{3}+1\right)=-1\)
g) \(\dfrac{5-\sqrt{5}}{\sqrt{5}-1}-\dfrac{4}{\sqrt{5}+1}=\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}-\dfrac{4}{\sqrt{5}+1}=\sqrt{5}-\dfrac{4}{\sqrt{5}+1}=\dfrac{5+\sqrt{5}-4}{\sqrt{5}+1}=1\)
h)\(\sqrt{37-20\sqrt{3}+\sqrt{37+20\sqrt{3}}}=\sqrt{37-20\sqrt{3}+\left(5+2\sqrt{3}\right)}=\sqrt{42-18\sqrt{3}}=\sqrt{\left(3\sqrt{3}+3\right)^2+6}\)
= \(\sqrt{12-2.2\sqrt{3}.5+25}-\sqrt{12+2.2\sqrt{3}.5+25}\)
= \(\sqrt{\left(2\sqrt{3}-5\right)^2}-\sqrt{\left(2\sqrt{3}+5\right)^2}\)
= \(|2\sqrt{3}-5|-2\sqrt{3}-5\)
=\(5-2\sqrt{3}-2\sqrt{3}-5=-4\sqrt{3}\)
\(=\sqrt{\left(5-2\sqrt{3}\right)^2}+\sqrt{\left(5+2\sqrt{3}\right)^2}\)
\(=\left|5-2\sqrt{3}\right|+\left|5+2\sqrt{3}\right|\)
\(=5-2\sqrt{3}+5+2\sqrt{3}\)
\(=10\)
B = \(\sqrt{\sqrt{75-2.2\sqrt{2}.5\sqrt{3}+8}+\sqrt{50-2.2\sqrt{3}.5\sqrt{2}+12}}.\sqrt{3\sqrt{3}-3\sqrt{2}}\)
= \(\sqrt{\sqrt{\left(5\sqrt{3}-2\sqrt{2}\right)^2}+\sqrt{\left(5\sqrt{2}+2\sqrt{3}\right)^2}}.\sqrt{3\sqrt{3}-3\sqrt{2}}\)
= \(\sqrt{5\sqrt{3}-2\sqrt{2}+5\sqrt{2}-2\sqrt{3}}.\sqrt{3\sqrt{3}-3\sqrt{2}}\)
= \(\sqrt{3\sqrt{3}+3\sqrt{2}}.\sqrt{3\sqrt{3}-3\sqrt{2}}=\sqrt{\left(3\sqrt{3}+3\sqrt{2}\right)\left(3\sqrt{3}-3\sqrt{2}\right)}\)
= \(\sqrt{27-18}=\sqrt{9}=3\)
\(2\sqrt[]{37+20\sqrt[]{3}}-\sqrt[]{73-40\sqrt[]{3}}\)
\(=2\sqrt[]{25+2.5.2\sqrt[]{3}+12}-\sqrt[]{48-2.5.4\sqrt[]{3}+25}\)
\(=2\sqrt[]{\left(5+2\sqrt[]{3}\right)^2}-\sqrt[]{\left(5-4\sqrt[]{3}\right)^2}\)
\(=2\left|5+2\sqrt[]{3}\right|-\left|5-4\sqrt[]{3}\right|\)
\(=2\left(5+2\sqrt[]{3}\right)-\left(4\sqrt[]{3}-5\right)\left(vì.4\sqrt[]{3}>5\right)\)
\(=10+4\sqrt[]{3}-4\sqrt[]{3}+5\)
\(=15\)
\(B=\left(13-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)-8\sqrt{20+2\sqrt{43+24\sqrt{3}}}\)
\(=\left(2\sqrt{3}-1\right)^2\left(2+\sqrt{3}\right)^2-8\sqrt{20+2\sqrt{\left(4+3\sqrt{3}\right)^2}}\)
\(=\left(3\sqrt{3}+4\right)^2-8\sqrt{20+2\left(4+3\sqrt{3}\right)}\)
\(=\left(3\sqrt{3}+4\right)^2-8\sqrt{28+6\sqrt{3}}\)
\(=\left(3\sqrt{3}+4\right)^2-8\sqrt{\left(3\sqrt{3}+1\right)^2}\)
\(=43+24\sqrt{3}-8\left(3\sqrt{3}+1\right)=35\)
\(\sqrt{13-4\sqrt{3}}-\sqrt{37-20\sqrt{3}}\)
\(=\sqrt{12-4\sqrt{3}+1}-\sqrt{25-20\sqrt{3}+12}\)
\(=\sqrt{\left(2\sqrt{3}-1\right)^2}-\sqrt{\left(5-2\sqrt{3}\right)^2}\)
\(=\left|2\sqrt{3}-1\right|-\left|5-2\sqrt{3}\right|\)
\(=2\sqrt{3}-1-5+2\sqrt{3}\)
\(=4\sqrt{3}-6\)