giải pt
\(\sqrt{4-3 \sqrt{10-3x}}=x-2\)
p/s: ai đó có dùng windows 10 ko?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ge1\)
Đặt \(\sqrt{3x-2}+2\sqrt{x-1}=t\left(t\ge1\right)\)
\(pt\Leftrightarrow3t=t^2-4\)
\(\Leftrightarrow t^2-3t-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=-1\left(l\right)\end{matrix}\right.\)
\(t=4\Leftrightarrow\sqrt{3x-2}+2\sqrt{x-1}=4\)
\(\Leftrightarrow7x-6+4\sqrt{\left(3x-2\right)\left(x-1\right)}=16\)
\(\Leftrightarrow4\sqrt{3x^2-5x+2}=22-7x\)
\(\Leftrightarrow\left\{{}\begin{matrix}48x^2-80x+32=484+49x^2-308x\\22-7x\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}452+x^2-228x=0\\x\le\dfrac{22}{7}\end{matrix}\right.\)
\(\Leftrightarrow x=2\left(tm\right)\)
ĐKXĐ:
$\left\{\begin{matrix}
10-3x\geq 0\\x-2\geq 0
\end{matrix}\right.$
$\Leftrightarrow \left\{\begin{matrix}
x\leq \frac{10}{3}\\x\geq 2
\end{matrix}\right.$
Phương trình tương đương:
$\sqrt{4-3\sqrt{10-3x}}=x-2$
$\Leftrightarrow 4-3\sqrt{10-3x}=(x-2)^2$ (1)
Đặt $a-2=-\sqrt{10-3x}$ (2)
Từ (1) và (2) ta có hệ pt:
$\left\{\begin{matrix}
4-3(a-2)=(x-2)^2\\ 10-3x=(a-2)^2
\end{matrix}\right.$
$\Leftrightarrow
\left\{\begin{matrix}
10-3a=(x-2)^2\\10-3x=(a-2)^2
\end{matrix}\right.$
Giải hệ ta được nghiệm x = a suy ra x = 3.
\(\sqrt{4-3\sqrt{10-3x}}=x-2\)
\(\Leftrightarrow4-3\sqrt{10-3x}=\left(x-2\right)^2\)
\(\Leftrightarrow-3\sqrt{10-3x}=\left(x-2\right)^2-4\)
\(\Leftrightarrow9\left(10-3x\right)=x^2\left(x-4\right)^2\)
\(\Leftrightarrow90-27x=x^4-8x^3+16x^2\)
\(\Leftrightarrow90-27x-x^4+8x^3-16x^2=0\)
đến đây tự làm mình hơi lười
Bài 1:
ĐKXĐ: \(x\ge2\)
PT \(\Leftrightarrow x^2-6x+9+3\left(x-3\right)+\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+3\left(x-3\right)+\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}+\frac{x-3}{\sqrt{x-2}+1}=0\)
\(\Leftrightarrow\left(x-3\right)\left[x+\frac{2}{\sqrt{2x+3}+3}+\frac{1}{\sqrt{x-2}+1}\right]=0\)
Cái ngoặc to hiển nhiên > 0 với mọi \(x\ge2\) nên vô nghiệm.
Vậy x = 3
Bài 2:
HPT \(\Leftrightarrow\hept{\begin{cases}x^2+xy+y^2=19\left(x-y\right)^2\\\frac{19}{7}x^2-\frac{19}{7}xy+\frac{19}{7}y^2=19\left(x-y\right)^2\end{cases}}\)
Lấy pt dưới trừ pt trên:
\(\frac{12}{7}x^2-\frac{26}{7}xy+\frac{12}{7}y^2=0\Leftrightarrow\frac{2}{7}\left(2x-3y\right)\left(3x-2y\right)=0\)
Làm nốt ạ!
bạn ơi cho mk hỏi dòng thứ 3 từ trên xuống của bài 1 là sao vậy ????
Điều kiện xác định tự làm nha b.
Đặt \(\hept{\begin{cases}\sqrt{2+x}=a\\\sqrt{2-x}=b\end{cases}}\)
\(\Rightarrow a^2+4b^2=10-3x\)
Từ đây ta có pt trở thành
\(3a-6b+4ab-a^2-4b^2=0\)
\(\left(a-2b\right)\left(a-2b-3\right)=0\)
Tới đây đơn giản rồi b làm tiếp nhé
91 nhé
đặt \(\sqrt{4-x^2}=y\)
ta có phương trình \(\left(x+y\right)=2+3xy\)
bình lên rồi phân tích còn cái vừa nãy tớ nhầm bài khác xin lỗi
\(\sqrt{4-3\sqrt{10-3x}}=x-2\left(đk:2\le x\le\frac{10}{3}\right)\)
\(< =>4-3\sqrt{10-3x}=x^2-4x+4\)\(< =>4x-x^2-3\sqrt{10-3x}=0\)
\(< =>4x-12-\left(x^2-9\right)-3\sqrt{10-3x}+3=0\)
\(< =>4\left(x-3\right)-\left(x^2-9\right)-3\left(\sqrt{10-3x}-1\right)=0\)
\(< =>4\left(x-3\right)-\left(x-3\right)\left(x+3\right)+3\frac{3\left(x-3\right)}{\sqrt{10-3x}+1}=0\)
\(< =>\left(x-3\right)\left(4-x-3+\frac{9}{\sqrt{10-3x}+1}\right)=0\)
\(< =>\orbr{\begin{cases}x-3=0\\1-x+\frac{9}{\sqrt{10-3x}+1}=0\end{cases}< =>x=3}\)
Do \(\frac{9}{\sqrt{10-3x}+1}\ge9< = >1+\frac{9}{\sqrt{10-3x}+1}\ge10\)Mà \(x\le\frac{9}{3}\)=> vô nghiệm