Tìm tất cả các số nguyên dương x sao cho trong 3 mệnh đề sau có duy nhất một mệnh đề sai : P={ x+45 là số chính phương }, Q={(x-7):10}, R={ x-44 là số chính phương }
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét P và Q đùng thì A+51 có tận cùng là 2 . ko là số chính chính phương trái vs P => P hoạc Q sai (1)
xét Q và R đúng thì A - 38 có tận cùng là 3 . ko là số chính phương trái vs R => Q hoac R sai (2)
từ (1) và (2) => Q sai
b) vì A+ 51 là số chính phg nên A+51 có dạng m^2
vì A-38 là số cp nên A-38 có dạng n^2
=> A+51-(A-38)= m^2 - n^2
<=> 89 = (m-n) (m+n)
mà 89 là số ng tố => m-n = 1 ; m+n = 89
=> m= 45
=> A+ 51 = 45 x 45 = 2025
=> A = 1974
a) Mệnh đề P đúng, vì: \(\left| x \right| = \left\{ \begin{array}{l}x\quad \;\;(x \ge 0)\\ - x\quad (x < 0)\end{array} \right.\) nên \(\left| x \right| \ge x\).
Mệnh đề Q sai vì chỉ có các số \( \pm \sqrt {10} \) có bình phương bằng 10, nhưng \(\sqrt {10} \) và \( - \sqrt {10} \) đều không là số tự nhiên.
Mệnh đề R đúng vì \(x = - 1 + \sqrt 2 \in \mathbb{R}\) thỏa mãn \({x^2} + 2x - 1 = 0.\)
b) Có thể viết lại các mệnh đề trên như sau:
P: “\(\forall x \in \mathbb{R},\;\left| x \right| \ge x\)”
Q: “\(\exists n \in \mathbb{N},{n^2} = 10\)”
R: “\(\exists x \in \mathbb{R},\;{x^2} + 2x - 1 = 0\)”