:: Cho 90o xOy và tia phân giác Ot. Lấy điểm A thuộc tia Ox, điểm B thuộc tia Oy sao cho OA = OB. C là điểm tuỳ ý trên tia Ot.
a. Chứng minh ΔCAB cân.
b. OC cắt AB tại D. Tính AOD ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi H là một điểm bất kỳ trên tia Ot
Xét ΔOAB có OA=OB
nên ΔOAB cân tại O
mà OH là tia phân giác ứng với cạnh AB
nên Ot là đường cao ứng với cạnh AB
a) Vì Ot là phân giác xOy
=> xOt = yOt
Xét ∆OAC và ∆OBC ta có :
xOt = yOt
OC chung
OA = OB
=> ∆OAC = ∆OBC ( c.g.c)
=> AC = CB
=> ∆CAB cân tại C
Vì OA = OB
=> ∆OAB cân tại O
Xét ∆ODA và ∆ODB ta có :
OD chung
AO = BO ( ∆OAB cân )
OAD = OBD ( ∆OAB cân )
=> ∆ODA = ∆ODB ( c.g.c)
=> AD = DB (1)
=> ODA = ODB ( tương ứng)
Mà ODA + ODB = 180° ( kề bù)
=> ODA = ODB = \(\frac{180°}{2}\)= 90°(2)
Từ (1) và (2) => OD là trung trực AB
=> ADO = 90°
a) xet tam giac OAH va tam giac OBH : OH=OH ( canh chung ), OA=OB (gt), goc HOA= goc HOB( Ot la tia p/g goc xOy)-> tam giac = nhau (c-g-c)
b) cm tam giac OHB= tam giac AHC (c=g=c) ; OH=HC , BH=AH (tam giac OAH=tam giac OBH), goc OHB= goc CHA( 2 goc doi dinh)
c) C1 : cm tam giac OAB can tai O co OH la phan giac -> OH la duong cao -> OH vuong goc AB hay OC vuong goc AB
C2 : ta co : goc OHB+ goc OHA=180 ( 2 goc ke bu)
goc OHB= goc OHA( tam giac OHA= tam giac OHB )
--> goc OHB+goc OHB=180
-> 2 gpc OHB=180
->goc OHB=180:2=90
-> OH vuong goc AH tai H hay OC vuong goc AB
a) Xét ΔOAC;ΔOBCΔOAC;ΔOBC có :
OA=OB(gt)OA=OB(gt)
ˆAOC=ˆBOCAOC^=BOC^ (Ot là tia phân giác của ˆxOyxOy^ )
OC:chungOC:chung
=> ΔOAC=ΔOBC(c.g.c)ΔOAC=ΔOBC(c.g.c)
=> AC=BCAC=BC (2 cạnh tương ứng)
Xét ΔCABΔCAB có :
AC=BC(cmt)AC=BC(cmt)
=> ΔCABΔCAB cân tại C (đpcm)
b) Xét ΔOABΔOAB có :
OA=OB(gt)OA=OB(gt)
=> ΔOABΔOAB cân tại O
Mà có : ODOD là tia phân giác của ˆAOBAOB^ (gt)
=> OD đồng thời là đường trung trực trong ΔOABΔOAB
=> OD⊥ABOD⊥AB
Do đó : ˆADO=90o