K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2021

Ta có: \(G\left(x\right)=0\Leftrightarrow3x^2-4x+1=0\)

\(\Leftrightarrow3x^2-3x-x+1=3x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy x=1 và \(x=\dfrac{1}{3}\) là nghiệm của đa thức G(x).

16 tháng 4 2021

đặt g(x)=0

hay 3x\(^2\) - 4x + 1=0

=>3x\(^2\) - x-3x + 1=0

=> x(3x-1) - (3x -1)=0

=> (3x - 1)(x-1)=0

=>\(\left[{}\begin{matrix}3x-1=0\\x-1=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}\dfrac{1}{3}\\1\end{matrix}\right.\)

vậy x=1 hoặc x=\(\dfrac{1}{3}\)là nghiệm của g(x)

 

24 tháng 7 2019

Ta có : \(A=-3x^2-5\left|y+1\right|+3=-\left(3x^2+5\left|y+1\right|-3\right)\)

Lại có : \(x^2\ge0;\left|y+1\right|\ge0=>-\left(3x^2+5\left|y+1\right|-3\right)\le3\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x^2=0\\\left|y+1\right|=0\end{cases}=>\hept{\begin{cases}x=0\\y=-1\end{cases}}}\)

Vậy \(A_{min}=3\)khi \(x=0\)\(y=-1\)

Hok tốt !

12 tháng 4 2018

f(x)-g(x)=(x3+4x2-3x+2)+(x2-(x+4)+x-5)

             =x3+4x2-3x+2+x2-x-4+x-5

            =x3+5x2-3x-7=0

Dua vao luoc do hoc le

ta co

(x+1)(x2+4x-7)=0

=> x+1=0

x=1

dựa  vào biệt thức ta có

D=b2-4ac

hay 42-(-4(1.7)=16+28=44

nghiệm

\(\frac{-b+\left(-\right)\sqrt{D}}{2a}=\frac{-4+\left(-\right)\sqrt{44}}{2}=\sqrt{11-2}\)

hoặc \(\sqrt[-]{11}-2\)

vậy x=-1; x=\(\sqrt{11}-2\);x=\(\sqrt[-]{11-2}\)là các nghiệm của đa thức trên

nếu ko hiểu thì cũng ko sao đâu nhưng đây là kết quả đúng đấy

13 tháng 4 2018

cho -(x+4) ae đổi lại thành x(x+4) nha

26 tháng 7 2016

x2+4x-21 = x2 +7x-3x-21=x(x+7)-3(x+7)=(x-3)(x+7)

Nghiệm của pt là x=3 hoặc x = -7

26 tháng 7 2016

mk ko chắc lắm mình ghi kết quả nha :)

\(-\sqrt{33}-2\)

\(\sqrt{33}-2\)

mk ko chắc lắm :)

17 tháng 9 2021

\(2,\\ a,\sqrt{4x-4}+\sqrt{9x-9}-\sqrt{25x-25}=7\left(x\ge1\right)\\ \Leftrightarrow2\sqrt{x-1}+3\sqrt{x-1}-5\sqrt{x-1}=7\\ \Leftrightarrow0\sqrt{x-1}=7\Leftrightarrow x\in\varnothing\\ b,\sqrt{2x^2-3}=4\left(x\le-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\le x\right)\\ \Leftrightarrow2x^2-3=16\\ \Leftrightarrow x^2=\dfrac{19}{2}\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{19}{2}}\left(tm\right)\\x=-\sqrt{\dfrac{19}{2}}\left(tm\right)\end{matrix}\right.\)

17 tháng 9 2021

\(1,\\ A=\sqrt{5+4x}+\sqrt{7-3x}\\ ĐKXĐ:\left\{{}\begin{matrix}5+4x\ge0\\7-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{5}{4}\\x\le\dfrac{7}{3}\end{matrix}\right.\)

 

a: \(\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)

\(=x^3+y^3\)

b: \(\left(x+y\right)^3=\left(x+y\right)\left(x+y\right)^2\)

\(=\left(x+y\right)\left(x^2+2xy+y^2\right)\)

\(=x^3+2x^2y+xy^2+2x^2y+2xy^2+y^3\)

\(=x^3+3x^2y+3xy^2+y^3\)

3 tháng 9 2021

a. Ta có \(\left(x+y\right)\left(x^2-xy+y^2\right)=x^3-x^2y+xy^2+x^2y-xy^2+y^3=x^3+y^3\)

\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)=x^3+y^3\)

b. Ta có \(x^3+3x^2y+3xy^2+y^3=x^3+y^3+3xy\left(x+y\right)=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)=\left(x+y\right)\left(x^2+2xy+y^2\right)=\left(x+y\right)\left(x+y\right)^2=\left(x+y\right)^3\)\(\Rightarrow\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3\)

7 tháng 5 2016

ta rút gọn đa thức 

F(x)= 2x^3 + 3x^2 - 2x + 3

G(x)= 3x^2 - 7x + 2

H(x)= (2x^3 + 3x^2 - 2x + 3) - (3x^2 - 7x + 2)

     =  2x^3 + 3x^2 - 2x + 3 - 3x^2 + 7x - 2

     = 2x^3 + 5x + 1

P(x)=  (2x^3 + 3x^2 - 2x + 3) + (3x^2 - 7x + 2)

     = 2x^3 + 6x^2 - 9x + 5

4 tháng 5 2016

Bạn tự làm được, bài cực kì cơ bản. Mình hd thôi.

Bạn lấy 2 đa thức trừ cho nhau, nhớ để ngoặc để phá dấu không bị nhầm.

Câu b thì nghiệm của đa thức chính là tìm x sao cho H(x)=0