Giải phương trình nghiệm nguyên :
a) 9x + 20y = 547
b) 11x+8y=73
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm nghiệm nguyên của các phương trình sau:
a) 12x - 7y = 45 (1)
ta thấy 45 và 12 chia hết cho 3 nên y cũng phải chia hết cho 3
đặt y=3k, ta có:
12x-7.3k=45
<=> 4x-7k=15 (chia cả 2 vế cho 3)
<=> x= \(\frac{15+7k}{4}\)
<=> x= \(2k+4-\frac{k+1}{4}\)
đặt t=\(\frac{k+1}{4}\)(t \(\in\) Z) => k = 4t – 1
Do đó
x = 2(4t – 1) + 4 – t = 7t + 2
y = 3k = 3(4t - 1) = 12t – 3
Vậy nghiệm nguyên của phương trình được biểu thị bởi công thức:
\(\hept{\begin{cases}x=7t+2\\y=12t-3\end{cases}}\)
Câu b và c bạn làm tương tự
Thấy đúng thì k cho mình nhé
a,\(6x-8y=9\)
\(\Rightarrow x=\frac{9+8y}{6}\)
\(y=\frac{6x-9}{8}\)
Vậy....
\(b,11x+18y=120\)
\(\Rightarrow x=\frac{120-18y}{11}\)
\(y=\frac{120-11x}{18}\)
chac lam the nay a, x-3y=5
=>x=5+3y
=>y=x-5/3
vậy nghiêm nguyên của pt la x;y = 5+3y ; y=x-5 /3 voi x,y thuoc Z b,c tuong tu
1) Ta có 17(x-10)=39(y-4). Ta có 17(x-10)=39(y-4), suy ra x-10=39k, y-4=17k. Vậy nghiệm của phương trình là \(x=39k+10,y=17k+4\) với k nguyên tùy ý.
2)Các bài sau làm tương tự
\(11x+8y=73\)
\(\Rightarrow11x+8y=33+40\)
\(\Rightarrow11x+8y=11.3+8.5\)
\(\Rightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}\)
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
Đây là dạng tìm nghiệm nguyên của phương trình bậc nhất hai ẩn. Cách phổ biến nhất là rút một biến theo biến còn lại, sử dụng đặt ẩn phụ đến khi nào hai biến biểu diễn qua tham số m thuộc Z.
a.
\(9x+20y=547\\ \Rightarrow9x=547-20y\\ \Rightarrow x=\dfrac{547-20y}{9}\\ \Rightarrow x=60-2y+\dfrac{7-2y}{9}\)
x là số nguyên khi \(\dfrac{7-2y}{9}\) nhận giá trị nguyên.
Đặt \(7-2y=9t;t\notinℤ\\ \Rightarrow y=\dfrac{7-9t}{2}=3-4t+\dfrac{1-t}{2}\)
Đặt \(1-t=2m;m\inℤ\)
\(\Rightarrow t=1-2m\Rightarrow y=3-4\left(1-2m\right)+m\\ \Rightarrow y=9m-1\)
\(\Rightarrow x=60-2\left(9m-1\right)+\dfrac{7-2\left(9m-1\right)}{9}\\ \Rightarrow x=60-18m+2+1-2m=63-20m\)
Vậy nghiệm nguyên của phương trình đã cho là:
\(x=63-20m;y=9m-1.\forall m\inℤ\)
b. Làm tương tự câu a