Sắp xếp các phân số sau theo thứ tự từ bé đến lớn 444/555, 333/444, 118/119, 119/120, 555/1110.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(333^{4^5}=\left(3.111\right)^{4^5}=3^{4^5}.111^{4^5}\)
\(3^{444^5}=3^{\left(4.111\right)^5}=3^{4^5.111^5}=\left(3^{4^5}\right)^{111^5}=3^{4^5}.\left(3^{4^5}\right)^{111^5-1}=3^{4^5}.\left(81^5\right)^{111^5-1}\)
\(3^{4^{555}}=3^{4^5.4^{550}}=\left(3^{4^5}\right)^{4^{550}}\)
+) Dễ có: \(3^{4^5}.111^{4^5}\) < \(3^{4^5}.\left(81^5\right)^{111^5-1}\)
=> \(333^{4^5}\) < \(3^{444^5}\) (1)
+) Ta có: \(\left(3^{4^5}\right)^{111^5}\) < \(\left(3^{4^5}\right)^{4^{550}}\) vì \(111^5\) < \(4^{550}=\left(4^5\right)^{110}=1024^{110}\)
=> \(3^{444^5}\) < \(3^{4^{555}}\) (2)
(1)(2) => \(333^{4^5}\) < \(3^{444^5}\) < \(3^{4^{555}}\)
a)Ta có: \(\frac{1313}{1515}< \frac{1313}{1428}< \frac{1326}{1428}\Rightarrow\frac{1313}{1515}< \frac{1326}{1428}\)
b)Ta có: \(1-\frac{119}{120}=\frac{1}{120}< 1-\frac{118}{119}=\frac{1}{119}\Rightarrow\frac{119}{120}>\frac{118}{119}\)
c)Ta có: \(\frac{222}{555}< \frac{222}{444}< \frac{333}{444}\Rightarrow\frac{222}{555}< \frac{333}{444}\)
(111 + 222 + 333 + 444 + 555 + 666 + 777 + 888 + 999)x 2.................999 x 2 x 2 x 2 ?
A.(111 + 222 + 333 + 444 + 555 + 666 + 777 + 888 + 999)x 2 > 999 x 2 x 2 x 2 = 9990 > 7992
B.(111 + 222 + 333 + 444 + 555 + 666 + 777 + 888 + 999)x 2 < 999 x 2 x 2 x 2 = 9990 < 7992
C.(111 + 222 + 333 + 444 + 555 + 666 + 777 + 888 + 999)x 2 = 999 x 2 x 2 x 2 = 9990 = 7992
333-222=111
111+444=555
555-555=0
0+666=666
hc tốttttttttttt
\(333-222=111\)
\(555-555=0\)
\(111+444=555\)
\(0+666=666\)
333 + 444 = 777
555 + 444 = 999
ủng hộ mk nhé
a)\(\frac{1313}{1515}=\frac{13\times101}{15\times101}=\frac{13}{15}\)
\(\frac{1326}{1428}=\frac{1326:102}{1428:102}=\frac{13}{14}\)
DO \(\frac{13}{14}>\frac{13.}{15}\) nên \(\frac{1326}{1428}>\frac{1313}{1515}\)
\(b\))\(\frac{222}{555}\) và \(\frac{333}{444}\)
\(\frac{222}{555}=\frac{2\times111}{5\times111}=\frac{2}{5}\)
\(\frac{333}{444}=\frac{3\times111}{4\times111}=\frac{3}{4}\)
DO \(\frac{2}{5}< \frac{3}{4}\) nên \(\frac{222}{555}< \frac{333}{444}\)
111 + 111 = 222
222 + 222 = 444
333 + 333 = 666
444 + 444 = 888
555 + 555 = 1110
111+111=222
222+222=444
333+333=666
444+444=888
555+555=1110
Tham khảo nha bạn
\(\dfrac{555}{1110};\dfrac{333}{444};\dfrac{444}{555};\dfrac{118}{119};\dfrac{119}{120}\)
\(\dfrac{444}{555}\) = \(\dfrac{444:111}{555:111}\) = \(\dfrac{4}{5}\) = 1 - \(\dfrac{1}{5}\)
\(\dfrac{333}{444}\) = \(\dfrac{333:111}{444:111}\) = \(\dfrac{3}{4}\) = 1 - \(\dfrac{1}{4}\)
\(\dfrac{118}{119}\) = 1 - \(\dfrac{1}{119}\)
\(\dfrac{119}{120}\) = 1 - \(\dfrac{1}{120}\)
\(\dfrac{555}{1110}\) = \(\dfrac{555:555}{1110:555}\) = \(\dfrac{1}{2}\) = 1 - \(\dfrac{1}{2}\)
Vì : \(\dfrac{1}{2}>\dfrac{1}{3}>\dfrac{1}{4}>\) \(\dfrac{1}{119}\) > \(\dfrac{1}{120}\)
nên \(\dfrac{555}{1110}>\dfrac{333}{444}>\)\(\dfrac{444}{555}\) > \(\dfrac{118}{119}\) > \(\dfrac{119}{120}\)
Vậy Các phân số đã cho được sắp xếp theo thứ tự từ bé đến lớn là:
\(\dfrac{555}{1110}\); \(\dfrac{333}{444}\); \(\dfrac{444}{555}\); \(\dfrac{118}{119}\); \(\dfrac{119}{120}\)