So sánh phân số a+2020/a+2017 và a+2021/a+2018 (với là số tự nhiên)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kiến thức cần nhớ:
Tử số 1 lớn mẫu số 1; tử số 2 lớn hơn mẫu số 2
Tử số 1 trừ mẫu số 1 = tử số 2 trừ mẫu số 2 thì ta dùng phương pháp so sánh phân số bằng phần hơn em nhé. Hai phân số, phân số nào có phần hơn lớn hơn thì phân số đó lớn hơn
\(\dfrac{a+2020}{a+2017}\) = 1 + \(\dfrac{3}{a+2017}\)
\(\dfrac{a+2021}{a+2018}\) = 1 + \(\dfrac{3}{a+2018}\)
Vì \(\dfrac{3}{a+2017}\) > \(\dfrac{3}{a+2018}\)
Vậy \(\dfrac{a+2020}{a+2017}\) > \(\dfrac{a+2021}{a+2018}\)
Lời giải:
$\frac{a+2020}{a+2017}=\frac{a+2017+3}{a+2017}=1+\frac{3}{a+2017}$
$\frac{a+2021}{a+2018}=\frac{a+2018+3}{a+2018}=1+\frac{3}{a+2018}$
Hiển nhiên: $\frac{3}{a+2017}> \frac{3}{a+2018}$
Suy ra $1+\frac{3}{a+2017}> 1+\frac{3}{a+2018}$
Hay $\frac{a+2020}{a+2017}> \frac{a+2021}{a+2018}$
`a,`
`5/6=1-1/6`
`7/8=1-1/8`
Mà `1/6>1/8 -> 5/6<7/8`
`b,`
`9/5=(9 \times 2)/(5 \times 2)=18/10`
`3/2=(3 \times 5)/(2 \times 5)=15/10`
`18/10 > 15/10 -> 9/5 > 3/2`
`c,`
`2017/2018 = 1-1/2018`
`2019/2020=1-1/2020`
`1/2018 > 1/2020 -> 2017/2018 < 2019/2020`
`d,`
`2018/2017 = 1+1/2017`
`2020/2019 = 1+1/2019`
`1/2017 > 1/2019 -> 2018/2017>2020/2019`
Lời giải:
$A=1-\frac{1}{2019}+1-\frac{1}{2020}+1-\frac{1}{2021}+1+\frac{3}{2018}$
$=4+(\frac{1}{2018}-\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2020}+\frac{1}{2018}-\frac{1}{2021})$
$> 4+0+0+0+0=4$
ta thấy 2 phân số 2017/2018 và 2019/2020 đều là phân số nhỏ hơn 1 nên 1 trong 2 phân số sẽ có 1 phân số nhỏ nhất.
phần này bạn tự so sánh,2017/2018<2019/2020
tiếp theo bạn so sánh 2 phân số còn lại , 2018/2017>2020/2019
vậy 2017/2018<2019/2020<2018/2017<2020/2019
chúc bạn học tốt
\(\dfrac{a+2020}{a+2017}=1+\dfrac{3}{a+2017}\)
\(\dfrac{a+2021}{a+2018}=1+\dfrac{3}{a+2018}\)
a+2017<a+2018
=>3/a+2017>3/a+2018
=>\(\dfrac{a+2020}{a+2017}>\dfrac{a+2021}{a+2018}\)
>