1,Cho 0<x<1/2. chứng minh 1/x + 1/(1-2x) >=8
2, Cho x,y>0 và x+y=1 chứng minh \(\frac{1}{xy}+\frac{2}{x^2+y^2}>=8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y=1\)\(\Leftrightarrow\hept{\begin{cases}x-1=-y\\y-1=-x\end{cases}}\)
Ta có: \(\frac{x}{y^3-1}-\frac{y}{x^3-1}=\frac{x}{\left(y-1\right)^3+3y\left(y-1\right)}-\frac{y}{\left(x-1\right)^3+3x\left(x-1\right)}\)
\(=\frac{x}{-x^3-3xy}-\frac{y}{-y^3-3xy}=\frac{x}{-x\left(x^2+3y\right)}-\frac{y}{-y\left(y^2+3x\right)}\)
\(=\frac{-1}{x^2+3y}+\frac{1}{y^2+3x}=\frac{-\left(y^2+3x\right)+\left(x^2+3y\right)}{\left(x^2+3y\right)\left(y^2+3x\right)}=\frac{-y^2-3x+x^2+3y}{x^2y^2+3x^3+3y^3+9xy}\)
\(=\frac{\left(x^2-y^2\right)-3\left(x-y\right)}{x^2y^2+3\left(x^3+y^3\right)+9xy}=\frac{\left(x-y\right)\left(x+y\right)-3\left(x-y\right)}{x^2y^2+3\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]+9xy}\)
\(=\frac{\left(x-y\right)-3\left(x-y\right)}{x^2y^2+3\left(1-3xy\right)+9xy}=\frac{-2\left(x-y\right)}{x^2y^2+3-9xy+9xy}=\frac{-2\left(x-y\right)}{x^2y^2+3}\)
\(\Rightarrow\frac{x}{y^3-1}-\frac{y}{x^3-1}+\frac{2\left(x-y\right)}{x^2y^2+3}=\frac{-2\left(x-y\right)}{x^2y^2+3}+\frac{2\left(x-y\right)}{x^2y^2+3}=0\)( đpcm )
Xét \(\frac{x}{y^3-1}+\frac{y}{x^3-1}=\frac{1-y}{y^3-1}+\frac{1-x}{x^3-1}=-\frac{1}{x^2+x+1}-\frac{1}{y^2+y+1}\)
\(=-\frac{x^2+y^2+x+y+2}{\left(x^2+x+1\right)\left(y^2+y+1\right)}=-\frac{x^2+y^2+3}{x^2y^2+xy\left(x+y\right)+x^2+y^2+xy+x+y+1}\)
\(=-\frac{\left(x+y\right)^2-2xy+3}{x^2y^2+x^2+y^2+2xy+2}=-\frac{4-2xy}{x^2y^2+3}=\frac{2\left(xy-2\right)}{x^2y^2+3}\)
từ đó ta có đpcm
1/
\(P=\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{2}{xy+yz+xz}+\frac{1}{xy+yx+xz}+\frac{2}{x^2+y^2+z^2}\)\
\(\ge\frac{2}{\frac{\left(x+y+z\right)^2}{3}}+\frac{\left(2\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=14\)
Ta thấy dấu bằng xảy ra khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\\frac{1}{xy+yz+xz}=\frac{\sqrt{2}}{x^2+y^2+z^2}\end{cases}}\)
Hai điều kiện không thể đồng thời xảy ra nên không tồn tại dấu bằng. Vậy P > 14
1) vì x,y,z là các số bất kì, ta có bđt luôn đúng: (x+y+z)2 \(\ge\)3(xy+yz+zx)
vì x+y+z=1 nên suy ra \(\frac{1}{xy+yz+zx}\ge3\)
đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)
ta có \(\frac{1}{3\left(xy+yz+zx\right)}+\frac{1}{x^2+y^2+z^2}\ge\frac{4}{\left(x+y+z\right)^3}=4\)
\(\Rightarrow\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{4}{2\left(xy+yz+zx\right)}+\frac{2}{2\left(xy+yz+zx\right)}+\frac{2}{x^2+y^2+z^2}\)\(\ge2\cdot3+2\cdot4=14\)
đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\2\left(xy+yz+zx\right)=x^2+y^2+z^2\end{cases}}\)
hệ này vô nghiệm nên bât không trở thành đẳng thức
vậy bất đẳng thức được chứng minh
2) ta có \(\frac{x^3}{y^3+8}+\frac{y+2}{27}+\frac{y^2-2y+4}{27}\ge\frac{x}{3}\Rightarrow\frac{x^3}{y^3+8}\ge\frac{9x+y-y^2-6}{27}\)
tương tự ta có: \(\frac{y^3}{z^3+8}\ge\frac{9y+z-z^2-6}{27},\frac{z^3}{x^3+8}\ge\frac{9z+x-x^2-6}{27}\)nên
\(VT\ge\frac{10\left(x+y+z\right)-\left(x^2+y^2+z^2\right)-18}{27}=\frac{12-\left(x^2+y^2+z^2\right)}{27}\)mà ta lại có
\(\frac{12-\left(x^2+y^2+z^2\right)27}{27}=\frac{3+\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{27}=\frac{1}{9}+\frac{2}{27}\left(xy+yz+zx\right)\)
từ đó ta có điều phải chứng minh, đẳng thức xảy ra khi x=y=z=1
\(\dfrac{x-y}{z^2+1}=\dfrac{x-y}{z^2+xy+yz+zx}=\dfrac{x-y}{z\left(z+y\right)+x\left(z+y\right)}=\dfrac{x-y}{\left(x+z\right)\left(z+y\right)}\)
Tương tự: \(\dfrac{y-z}{x^2+1}=\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}\);\(\dfrac{z-x}{y^2+1}=\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)
Cộng vế với vế \(\Rightarrow VT=\dfrac{x-y}{\left(x+z\right)\left(y+z\right)}+\dfrac{y-z}{\left(x+y\right)\left(x+z\right)}+\dfrac{z-x}{\left(x+y\right)\left(y+z\right)}\)
\(=\dfrac{\left(x-y\right)\left(x+y\right)+\left(y-z\right)\left(y+z\right)+\left(z-x\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(=\dfrac{x^2-y^2+y^2-z^2+z^2-x^2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=0\)(đpcm)
Ta có \(y^3-1=\left(y-1\right)\left(y^2+y+1\right)=-x\left(y^2+y+1\right)\)
(vì \(xy\ne0\Rightarrow x,y\ne0\))
\(\Rightarrow x-1\ne0;y-1\ne0\)
\(\Rightarrow\frac{x}{y^3-1}=\frac{-1}{y^2+y+1}\)
\(x^3-1=\left(x-1\right)\left(x^2-x+1\right)=-y\left(x^2-x+1\right)\Rightarrow\frac{y}{x^3-1}=\frac{-1}{x^2+x+1}\)
\(\Rightarrow\frac{x}{y^3-1}+\frac{y}{x^3-1}=\frac{-1}{y^2+y+1}+\frac{-1}{x^2+x+1}\)
\(=-\left(\frac{x^2+x+1+y^2+y+1}{\left(x^2+x+1\right)\left(y^2+y+1\right)}\right)=-\left(\frac{\left(x+y\right)^2-2xy+\left(x+y\right)+2}{x^2y^2+\left(x+y\right)^2-2xy+xy\left(x+y\right)+xy+\left(x+y\right)+1}\right)\)
\(=-\frac{4-2xy}{x^2y^2+3}\Rightarrow\frac{x}{y^3-1}+\frac{y}{x^3-1}-\frac{2\left(xy-2\right)}{x^2y^2+3}=0\)
Đặt: \(A=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\)
Ta có: \(A=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}=\frac{xy}{x}+\frac{xy}{y}+\frac{2}{x+y}\left(\text{Do: xy = 1}\right)\)
\(=x+y+\frac{2}{x+y}\)
\(=\frac{x+y}{2}+\frac{x+y}{2}+\frac{2}{x+y}\)
Đặt: \(B=\frac{x+y}{2};C=\frac{x+y}{2}+\frac{2}{x+y}\)
\(\Rightarrow A=B+C\)
Vì x, y > 0, áp dụng BĐT Cô-si, ta có:
\(\Rightarrow B=\frac{x+y}{2}\ge\sqrt{xy}=\sqrt{1}=1\) (1)
Ta có: x, y > 0 => x + y > 0
Áp dụng BĐT \(\frac{a}{b}+\frac{b}{a}\ge2\) với hai số dương x + y và 2
\(\Rightarrow C=\frac{x+y}{2}+\frac{2}{x+y}\ge2\) (2)
\(\text{Từ (1); (2) }\Rightarrow B+C=\frac{x+y}{2}+\frac{2}{x+y}\ge1+2\)
\(\Rightarrow A\ge3\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\ge3\)
=> ĐPCM
2) Ta có:
\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\)
Áp dụng BĐT Schwarz:
\(\frac{1}{2xy}+\frac{1}{x^2+y^2}\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\)
Mà x+y=1 nên suy ra:
\(\frac{1}{2xy}+\frac{1}{x^2+y^2}\ge4\)
\(\Rightarrow2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\ge8\)
=>đpcm.
Dấu ''='' xảy ra khi x=y=1/2