K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 1

a.

Do AM là tiếp tuyến của (O) \(\Rightarrow AM\perp OA\Rightarrow\widehat{OAM}=90^0\)

\(\Rightarrow\) 3 điểm O, A, M cùng thuộc đường tròn đường kính OM (1)

Tương tự, do MC là tiếp tuyến của (O) \(\Rightarrow\widehat{OCM}=90^0\)

\(\Rightarrow\) 3 điểm O, C, M cùng thuộc đường tròn đường kính OM (2)

(1);(2) \(\Rightarrow\) 4 điểm O, A, M, C cùng thuộc đường tròn đường kính OM

b.

Do M là giao điểm 2 tiếp tuyến của (O) tại A và C \(\Rightarrow MA=MC\) (t/c hai tiếp tuyến cắt nhau)

Lại có \(OA=OC=R\)

\(\Rightarrow OM\)  là trung trực của AC

\(\Rightarrow OM\perp AC\) tại I

c.

Do AB là đường kính và D thuộc đường tròn \(\Rightarrow\widehat{ADB}\) là góc nội tiếp chắn nửa đường tròn

\(\Rightarrow\widehat{ADB}=90^0\) hay \(AD\perp BM\)

Áp dụng hệ thức lượng trong tam giác vuông BAM với đường cao AD:

\(AM^2=MD.MB\) (3)

Theo c/m câu b ta có \(AI\perp MO\), áp dụng hệ thức lượng trong tam giác vuông OAM với đường cao AI:

\(AM^2=MI.MO\) (4)

(3);(4) \(\Rightarrow MA^2=MI.MO=MD.MB\)

d.

Áp dụng hệ thức lượng trong tam giác vuông OAM với đường cao AI:

\(OA^2=OI.OM\)

Mà \(OA=OB=R\Rightarrow OB^2=OI.OM\Rightarrow\dfrac{OI}{OB}=\dfrac{OB}{OM}\)

Xét hai tam giác BOI và MOB có:

\(\left\{{}\begin{matrix}\dfrac{OI}{OB}=\dfrac{OB}{OM}\left(cmt\right)\\\widehat{MOB}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta BOI\sim\Delta MOB\left(c.g.c\right)\)

\(\Rightarrow\widehat{OIB}=\widehat{OBM}\)

NV
5 tháng 1

loading...

a: Xét ΔMAO và ΔMCO có

MA=MC

AO=CO

MO chung

=>ΔMAO=ΔMCO

=>góc MCO=90 độ

góc MAO+góc MCO=180 độ

=>MAOC nội tiếp đường tròn đường kính MO

=>I là trung điểm của MO

b: góc MCO=90 độ

=>MC là tiếp tuyến của (O)

Xét ΔMCD và ΔMBC có

góc MCD=góc MBC

góc CMD chung

=>ΔMCD đồng dạng với ΔMBC

=>MC/MB=MD/MC

=>MC^2=MB*MD

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AMa) Chứng minh AB = BCb) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyếnMC với đường tròn (C là tiếp điểm).a) Chứng minh OM // BCb) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hànhc) Chứng minh...
Đọc tiếp

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng

0
25 tháng 3 2018

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) Xét tam giác COD cân tại O có OH là đường cao

⇒ OH cũng là tia phân giác ⇒ ∠(COM) = ∠(MOD)

Xét ΔMCO và ΔMOD có:

CO = OD

∠(COM) = ∠(MOD)

MO là cạnh chung

⇒ ΔMCO = ΔMOD (c.g.c)

⇒ ∠(MCO) = ∠(MDO)

∠(MCO) =  90 0 nên ∠(MDO) = 90 0

⇒ MD là tiếp tuyến của (O)

a: Xét tứ giác OACM có

\(\widehat{OAC}+\widehat{OMC}=90^0+90^0=180^0\)

=>OACM là tứ giác nội tiếp

=>O,A,C,M cùng thuộc một đường tròn

b: Xét (O) có

CA,CM là tiếp tuyến

Do đó: CA=CM

=>C nằm trên đường trung trực của AM(1)

OA=OM

=>O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra OC là đường trung trực của AM

=>OC\(\perp\)AM

Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>AM\(\perp\)MB tại M

Ta có: AM\(\perp\)MB

AM\(\perp\)OC

Do đó: OC//MB

c: Xét (O) có

ΔAKB nội tiếp

AB là đường kính

Do đó: ΔAKB vuông tại K

=>KB\(\perp\)KA tại K

=>AK\(\perp\)BC tại K

Xét ΔABC vuông tại A có AK là đường cao

nên \(BK\cdot BC=BA^2=\left(2R\right)^2=4R^2\)

4 tháng 12 2023

vẽ hình và làm bài trên

27 tháng 1 2019

a, Sử dụng các tứ giác nội tiếp chứng minh được  P M O ^ = P A O ^  và  P N O ^ = P B O ^ => ∆MON và ∆APB đồng dạng (g.g)

b, Theo tính chất hai tiếp tuyến cắt nhau ta có: MP = MA và NP = NB

Mặt khác MP.NP = P O 2  và PO = R Þ AM.BN = R 2  (ĐPCM)

c, Ta có  A M = R 2 => M P = R 2

Mặt khác  A M = R 2 => BN = 2R => PN = 2R

Từ đó tìm được MN =  5 R 2

DMON và DAPB đồng dạng nên  S M O N S A P B = M N A B 2 = 25 16

d, Khi quay nửa đường tròn đường kính AB xung quanh AB ta được hình cầu với tâm O và bán kính R' = OA = R

Thể tích hình cầu đó là V =  4 3 πR 3 (đvdt)

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AMa) Chứng minh AB = BCb) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyếnMC với đường tròn (C là tiếp điểm).a) Chứng minh OM // BCb) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hànhc) Chứng minh...
Đọc tiếp

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng
Mọi người ơi giúp e vsssssssssssssss.........E hỏi mà hong ai chỉ T.T

2
21 tháng 3 2020

ko làm mà muốn ăn thì chỉ có ăn cứt ăn đầu buồi nhá!

21 tháng 3 2020

Bài 1:

a,

OM là đường trung bình  của tam giác BAC => OM = 1/2*BC

OM = 1/2*AB

=> AB=BC (đpcm).

b, 

Tam giác ABC đều => BC = 2*r(O)

MN là đường trung bình của tam giác ABC => MN = 1/2*AB = r(O) = OM = OB =BN => BOMN là hình thoi.