Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAOM vuông tại A có tan AOM=AM/OA=căn 3
nên góc AOM=60 độ
=>sđ cung nhỏ AI=60 độ
=>sđ cung lớn AI=300 độ
b: Xét (O) có
MA,MC là tiếp tuyến
nên MA=MC và OM là phân giác của góc COA(1)
Xét (O) có
NC,NB là tiếp tuyến
nên NC=NB và ON là phân giác của góc COB(2)
Từ (1), (2) suy ra góc MON=1/2*180=90 độ
Xét ΔMON vuông tại O có OC là đường cao
nên MC*CN=OC^2
=>AM*BN=R^2
c: góc IAC=90 độ-góc OIA
góc MAI=90 độ-góc OAI
mà góc OIA=góc OAI
nên góc IAC=góc IAM
=>AI là phân giác của góc MAC
mà MI là phân giác của góc AMC
nên I là tâm đường tròn nội tiếp ΔMAC
a: Xét (O) có
MC là tiếp tuyến
MA là tiếp tuyến
Do đó: MC=MA
Xét (O) có
DC là tiếp tuyến
DB là tiếp tuyến
Do đó: DC=DB
Ta có: CM+DC=DM
nên MD=MA+BD
a: Xét ΔMAO và ΔMCO có
MA=MC
AO=CO
MO chung
=>ΔMAO=ΔMCO
=>góc MCO=90 độ
góc MAO+góc MCO=180 độ
=>MAOC nội tiếp đường tròn đường kính MO
=>I là trung điểm của MO
b: góc MCO=90 độ
=>MC là tiếp tuyến của (O)
Xét ΔMCD và ΔMBC có
góc MCD=góc MBC
góc CMD chung
=>ΔMCD đồng dạng với ΔMBC
=>MC/MB=MD/MC
=>MC^2=MB*MD
a) Xét tam giác COD cân tại O có OH là đường cao
⇒ OH cũng là tia phân giác ⇒ ∠(COM) = ∠(MOD)
Xét ΔMCO và ΔMOD có:
CO = OD
∠(COM) = ∠(MOD)
MO là cạnh chung
⇒ ΔMCO = ΔMOD (c.g.c)
⇒ ∠(MCO) = ∠(MDO)
∠(MCO) = 90 0 nên ∠(MDO) = 90 0
⇒ MD là tiếp tuyến của (O)
b) Ta có: OM = OA + AM = R + R = 2R
Xét tam giác MCO vuông tại C, CH là đường cao có:
MO 2 = MC 2 + OC 2
CH.OM = CM.CO
Lại có: CD = 2CH ⇒ CD = R 3
Tam giác CDE nội tiếp (O) có CE là đường kính nên ΔCDE vuông tại D
Theo định lí Py ta go ta có:
CE 2 = CD 2 + DE 2
d) Ta có: ∠(CFE) = 90 0 (F thuộc đường tròn đường kính CE)
Lại có CF là đường cao nên MC 2 = MF.ME
Tương tự, ta có: MC 2 = MH.MO
⇒ ME.MF = MH.MO
⇒
Xét ΔMOF và ΔMEN có:
∠(FMO) chung
⇒ ΔMOF ∼ ΔMEN (c.g.c)
⇒ ∠(MOF) = ∠(MEH)
a.
Do AM là tiếp tuyến của (O) \(\Rightarrow AM\perp OA\Rightarrow\widehat{OAM}=90^0\)
\(\Rightarrow\) 3 điểm O, A, M cùng thuộc đường tròn đường kính OM (1)
Tương tự, do MC là tiếp tuyến của (O) \(\Rightarrow\widehat{OCM}=90^0\)
\(\Rightarrow\) 3 điểm O, C, M cùng thuộc đường tròn đường kính OM (2)
(1);(2) \(\Rightarrow\) 4 điểm O, A, M, C cùng thuộc đường tròn đường kính OM
b.
Do M là giao điểm 2 tiếp tuyến của (O) tại A và C \(\Rightarrow MA=MC\) (t/c hai tiếp tuyến cắt nhau)
Lại có \(OA=OC=R\)
\(\Rightarrow OM\) là trung trực của AC
\(\Rightarrow OM\perp AC\) tại I
c.
Do AB là đường kính và D thuộc đường tròn \(\Rightarrow\widehat{ADB}\) là góc nội tiếp chắn nửa đường tròn
\(\Rightarrow\widehat{ADB}=90^0\) hay \(AD\perp BM\)
Áp dụng hệ thức lượng trong tam giác vuông BAM với đường cao AD:
\(AM^2=MD.MB\) (3)
Theo c/m câu b ta có \(AI\perp MO\), áp dụng hệ thức lượng trong tam giác vuông OAM với đường cao AI:
\(AM^2=MI.MO\) (4)
(3);(4) \(\Rightarrow MA^2=MI.MO=MD.MB\)
d.
Áp dụng hệ thức lượng trong tam giác vuông OAM với đường cao AI:
\(OA^2=OI.OM\)
Mà \(OA=OB=R\Rightarrow OB^2=OI.OM\Rightarrow\dfrac{OI}{OB}=\dfrac{OB}{OM}\)
Xét hai tam giác BOI và MOB có:
\(\left\{{}\begin{matrix}\dfrac{OI}{OB}=\dfrac{OB}{OM}\left(cmt\right)\\\widehat{MOB}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta BOI\sim\Delta MOB\left(c.g.c\right)\)
\(\Rightarrow\widehat{OIB}=\widehat{OBM}\)