K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1

do A=2024 => \(\left|x+2023\right|=2024\)

                   \(\Leftrightarrow\left[{}\begin{matrix}x+2023=2024\\x+2023=-2024\end{matrix}\right.\)

                    \(\Leftrightarrow\left[{}\begin{matrix}x=2024-2023\\x=-2024-2023\end{matrix}\right.\)

                    \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4047\end{matrix}\right.\)

vậy x \(\in\left\{-4047;1\right\}\)

22 tháng 8 2023

a) \(\left(x-2024\right)^{2023}=1\)

\(\Rightarrow\left(x-2024\right)^{2023}=1^{2023}\)

\(\Rightarrow x-2024=1\)

\(\Rightarrow x=2025\)

b) \(\left(2x-1\right)^5=32\)

\(\Rightarrow\left(2x-1\right)^5=2^5\)

\(\Rightarrow2x-1=2\)

\(\Rightarrow2x=3\)

\(\Rightarrow x=\dfrac{3}{2}\)

c) \(5< 2^x< 100\)

\(\Rightarrow4=2^2< 5< 2^x< 100< 128=2^7\)

\(\Rightarrow2< x< 7\)

 

22 tháng 8 2023

b , x = 3/2 a và b mình ko biết

1 tháng 1 2017

x=-2023 

k nhé bạ 

1 tháng 1 2017

x=-2023

9 tháng 2 2023

\(x+\left(x+1\right)+\left(x+2\right)+...+2023+2024=2024\)

\(\Rightarrow2023x+4090506=2024-2024-20232023\)

\(\Rightarrow x+4090506=-2023\)

\(\Rightarrow2023x=-2023-4090506\)

\(\Rightarrow2023x=-4092529\)

\(\Rightarrow x=-2023\).

 

13 tháng 2 2023

\(A=\dfrac{2024^{2023}+1}{2024^{2024}+1}\)

\(2024A=\dfrac{2024^{2024}+2024}{2024^{2024}+1}=\dfrac{\left(2024^{2024}+1\right)+2023}{2024^{2024}+1}=\dfrac{2024^{2024}+1}{2024^{2024}+1}+\dfrac{2023}{2024^{2024}+1}=1+\dfrac{2023}{2024^{2024}+1}\)

\(B=\dfrac{2024^{2022}+1}{2024^{2023}+1}\)

\(2024B=\dfrac{2024^{2023}+2024}{2024^{2023}+1}=\dfrac{\left(2024^{2023}+1\right)+2023}{2024^{2023}+1}=\dfrac{2024^{2023}+1}{2024^{2023}+1}+\dfrac{2023}{2024^{2023}+1}=1+\dfrac{2023}{2024^{2023}+1}\)

Vì \(2024>2023=>2024^{2024}>2024^{2023}\)

\(=>2024^{2024}+1>2024^{2023}+1\)

\(=>\dfrac{2023}{2024^{2023}+1}>\dfrac{2023}{2024^{2024}+1}\)

\(=>A< B\)

 

\(#PaooNqoccc\)

13 tháng 2 2023

dễ

29 tháng 4 2023

Với x = 2023 

<=> x + 1 = 2024

Khi đó P(2023) = x2023 - (x + 1).x2022 + ... + (x + 1).x - 1

= x2023 - x2023 - x2022 + .. + x2 + x - 1

= x - 1 = 2023 - 1 = 2022

25 tháng 12 2023

a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)

\(\left(b-1\right)^{2024}>=0\forall b\)

Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)

Thay a=-1 và b=1 vào P, ta được:

\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)

17 tháng 12 2023

a, 7\(x\).(2\(x\) + 10) =0

    \(\left[{}\begin{matrix}x=0\\2x+10=0\end{matrix}\right.\)

    \(\left[{}\begin{matrix}x=0\\2x=-10\end{matrix}\right.\)

     \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy \(x\in\) {-5; 0}

 

17 tháng 12 2023

b, -9\(x\) : (2\(x\) - 10) = 0

    9\(x\)                   = 0 

     \(x\)                    = 0 

c, (4 - \(x\)).(\(x\) + 3)  = 0

    \(\left[{}\begin{matrix}4-x=0\\x+3=0\end{matrix}\right.\)

    \(\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)

Vậy \(x\in\) {-3; 4}

=>(x-2023)[(x-2023)^21-1]=0

=>x-2023=0 hoặc x-2023=1

=>x=2023 hoặc x=2024