Hãy chứng tỏ: ( xy - yx) chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy + yx = (x10 + y1) +(y10 + x1) = (y10 + y1) + (x10+x1) = 11y + x11
TA có 11 chia hết cho 11 suy ra 11y và x11 đều chia hết cho 11
Suy ra xy + yx chia hết cho 11
Ta có : ( x.y ) + ( y . x ) chia hết cho 11 mà xy + yx phải là số chính phương
=> x 2 + y 2 chia hết cho 11
Vậy xy + yx chia hết cho 11
a) Ta có : xy + yx
= 10x + y +10y + x
= (10x + x) + (10y+y)
= 11x + 11y
= 11. ( x+y )
Vì 11 \(⋮\)11 \(\Rightarrow\)11.(x+y) \(⋮\)11
\(\Rightarrow\)(xy + yx) \(⋮\)11
Vậy ( xy + yx ) \(⋮\)11
b) Ta có : xy - yx
= 10x + y - 10y + x
= (10x-x) + (10y-y)
= 9x + 9y
= 9.(x+y)
Vì 9\(⋮\)9 \(\Rightarrow\)9.(x+y) \(⋮\)9
\(\Rightarrow\)xy+yx \(⋮\)9
Vậy xy + yx \(⋮\)9
P/s tham khảo nha
bai 1 :x la so chan (chia het cho 2)
x la so le (khong chia het cho 2
bai 2:tong cua 5 so tu nhien lien tiep chia het cho 5 vi tong 5 so tu nhien lien tiep la so co tan cung 0,5
bai 3:b,xy+yx=(x nhan 10)+y+(y nhan 10)+x=10x+y+10y+x=11x+11y.11x va 11y chia het cho 11. vay xy+yx chia het cho 11
a) x(x² + x) + x(x + 1)
= x²(x + 1) + x(x + 1)
= (x + 1)(x² + x)
= x(x + 1)² ⋮ (x + 1)
b) xy² - yx² + xy
= xy(y - x + 1) ⋮ xy
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3
gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2.
=> a+(a+1)(a+2)=a+a+1+a+2=3a+3.
3a chia hết cho 3,3 cũng chia hết cho 3
=> tổng này luôn luôn chia hết cho 3.
Ta có :
\(\overline{xy}-\overline{yx}=10x+y-10y-x=9x-9y=9\left(x-y\right)=3^2.\left(x-y\right)⋮3\)\(\left(đpcm\right)\)
Ta có : xy-yx=0
=> 0 chia hết cho 3
Hay xy-yx chia hết cho 3