Cho A=x mũ 2+2x+24 .Tìm x sao cho A là số chính phương
Giúp mình đi .Cám Ơn nhìu :3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y=\dfrac{2x-1}{mx^2-1}\)
Để hàm số có tiệm cận đứng x=2
\(\Rightarrow mx^2-1=0\) có nghiệm x=2
\(\Rightarrow m.2^2-1=0\Rightarrow4m=1\Rightarrow m=\dfrac{1}{4}\)
\(y=\dfrac{mx+2}{x+n}\left(x\ne-n\right)\)
Để hàm số có tiệm cận đứng x=2, thì mẫu có nghiệm x=2
\(\Leftrightarrow2+n=0\Leftrightarrow n=-2\)
\(A\left(3;-1\right)\in y\Rightarrow-1=\dfrac{3m+2}{3-2}\Rightarrow m=-1\)
\(\Rightarrow m+n=-1-2=-3\)
\(y=\dfrac{mx^2+2x-1}{2x^2+3}\)
Để hàm số có tiệm cận ngang y=2
\(\Rightarrow\lim\limits_{x\rightarrow\pm\infty}\dfrac{mx^2+2x-1}{2x^2+3}=2\)
\(\Rightarrow\dfrac{m}{2}=2\)
\(\Rightarrow m=4\)
1/a
3/5 - 3 < 2/3 x + 3/4 < 1/2 + 7/9
=> 3/5 - 3 - 3/4 < 2/3 x < 1/2 + 7/9 - 3/4
=> -63/20 < 2x/3 < 19/36
=> -567/180 < 120x/180 < 95/180
=> 120x \(\in\left\{0;-120;-240;-360;-480\right\}\)
=> x \(\in\left\{0;-1;-2;-3;-4\right\}\)
1/b
( 3x + 5 )( 2x - 7 ) < 0
=> 3x + 5 > 0 và 2x - 7 < 0
hoặc 3x + 5 < 0 và 2x - 7 > 0
TH1 : 3x + 5 > 0 và 2x - 7 < 0
Vì 2x - 7 < 0
=> x < 4
=> x \(\in\) { 0 ; 1 ; 2 ; 3 }
TH2 : 3x + 5 < 0 và 2x - 7 > 0
Vì 2x - 7 > 0
=> x > 3 ( 1 )
Vì 3x + 5 < 0
=> x là số nguyên âm ( 2 )
Do ( 1 ) mâu thuẫn với ( 2 ) nên ko tồn tại x ở TH này .
Vậy x \(\in\){ 0 ; 1 ; 2 ; 3 }
Ta có :\(\hept{\begin{cases}-2x-11:3x+2\\3x+2:3x+2\end{cases}}\)\(\implies\)\(\hept{\begin{cases}3.\left(-2x-11\right):3x+2\\2\left(3x+2\right):3x+2\end{cases}}\) \(\implies\) \(\hept{\begin{cases}-6x-33:3x+2\\6x+4:3x+2\end{cases}}\)
\(\implies\) \(-6x-33+6x+4:3x+2\)
\(\implies\) \(-29:3x+2\)
\(\implies\) \(3x+2\) \(\in\) Ư(-29)=\(\{\)\(1;-1;29;-29\) \(\}\)
\(\implies\) \(x\) \(\in\) \(\{\) \(-1;9\)\(\}\)
\(y=\dfrac{x-1}{x^2-mx+1}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{x-1}{x^2-mx+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{x-1}{x^2-mx+1}=0\)
Đồ thị có 3 tiệm cận khi đồ thị có 2 tiệm cận đứng
\(\Rightarrow x^2-mx+1\) có 2 nghiệm phân biệt khác 1
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=m^2-4>0\\1-m+1\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -2\\m>2\end{matrix}\right.\\m\ne2\end{matrix}\right.\)