K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2023

\(y=\dfrac{2x-1}{mx^2-1}\)

Để hàm số có tiệm cận đứng x=2

\(\Rightarrow mx^2-1=0\) có nghiệm x=2

\(\Rightarrow m.2^2-1=0\Rightarrow4m=1\Rightarrow m=\dfrac{1}{4}\)

22 tháng 7 2023

\(y=\dfrac{mx+2}{x+n}\left(x\ne-n\right)\)

Để hàm số có tiệm cận đứng x=2, thì mẫu có nghiệm x=2

\(\Leftrightarrow2+n=0\Leftrightarrow n=-2\)

\(A\left(3;-1\right)\in y\Rightarrow-1=\dfrac{3m+2}{3-2}\Rightarrow m=-1\)

\(\Rightarrow m+n=-1-2=-3\)

22 tháng 7 2023

\(y=\dfrac{mx^2+2x-1}{2x^2+3}\)

Để hàm số có tiệm cận ngang y=2

\(\Rightarrow\lim\limits_{x\rightarrow\pm\infty}\dfrac{mx^2+2x-1}{2x^2+3}=2\)

\(\Rightarrow\dfrac{m}{2}=2\)

\(\Rightarrow m=4\)

4 tháng 7 2018

1/a

3/5 - 3 < 2/3 x + 3/4 < 1/2 + 7/9

=> 3/5 - 3 - 3/4 < 2/3 x < 1/2 + 7/9 - 3/4

=> -63/20 < 2x/3 < 19/36

=> -567/180 < 120x/180 < 95/180

=> 120x \(\in\left\{0;-120;-240;-360;-480\right\}\)

=> x \(\in\left\{0;-1;-2;-3;-4\right\}\)

1/b

( 3x + 5 )( 2x - 7 ) < 0

=> 3x + 5 > 0 và 2x - 7 < 0 
hoặc 3x + 5 < 0 và 2x - 7 > 0 

TH1 : 3x + 5 > 0 và 2x - 7 < 0 
Vì 2x - 7 < 0 
=> x < 4
=> x \(\in\) { 0 ; 1 ; 2 ; 3 } 
TH2 : 3x + 5 < 0 và 2x - 7 > 0 
Vì 2x - 7 > 0 
=> x > 3 ( 1 )
Vì 3x + 5 < 0 
=> x là số nguyên âm ( 2 )
Do ( 1 ) mâu thuẫn với ( 2 ) nên ko tồn tại x ở TH này .
Vậy x \(\in\){ 0 ; 1 ; 2 ; 3 }

4 tháng 7 2018

2  . Gọi 4 số tự nhiên liên tiêp là a , a + 1 , a + 2 , a + 3
 a ( a + 2 ) + 9 = ( a + 2 )( a + 3 ) 
 a^2 + 2a + 9 = a^2 + 3a + 2a + 6
 a^2 + 2a + 9 = a^2 + 5a + 6
 3 = 3a
=> a = 1 
Vậy 4 số tự nhiên liên đó là 1 , 2 , 3 , 4

18 tháng 2 2020

Ta có :\(\hept{\begin{cases}-2x-11:3x+2\\3x+2:3x+2\end{cases}}\)\(​​​​\implies\)\(\hept{\begin{cases}3.\left(-2x-11\right):3x+2\\2\left(3x+2\right):3x+2\end{cases}}\) \(\implies\) \(\hept{\begin{cases}-6x-33:3x+2\\6x+4:3x+2\end{cases}}\)

  \(\implies\)    \(-6x-33+6x+4:3x+2\) 

  \(\implies\)    \(-29:3x+2\)

  \(\implies\)    \(3x+2\) \(\in\)  Ư(-29)=\(\{\)\(1;-1;29;-29\) \(\}\)

  \(\implies\)  \(x\) \(\in\) \(\{\) \(-1;9\)\(\}\)

22 tháng 7 2023

\(y=\dfrac{x-1}{x^2-mx+1}\)

\(\lim\limits_{x\rightarrow+\infty}\dfrac{x-1}{x^2-mx+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{x-1}{x^2-mx+1}=0\)

Đồ thị có 3 tiệm cận khi đồ thị có 2 tiệm cận đứng

\(\Rightarrow x^2-mx+1\) có 2 nghiệm phân biệt khác 1

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=m^2-4>0\\1-m+1\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m< -2\\m>2\end{matrix}\right.\\m\ne2\end{matrix}\right.\)