K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 2 2020

Do p là số nguyên tố, nên ta xét:

+ Xét p = 2

=> 7p + 1 = 7 . 2 + 1 = 14 + 1 = 15 (loại)

+ Xét p = 3

=> 7p + 1 = 7 . 3 + 1 = 21 + 1 = 22 (loại)

+ Xét p = 5

=> 7p + 1 = 7 . 5 + 1 = 35 + 1 = 36 = 62 (chọn)

+ Xét p > 5 => p có dạng 5k + 1; 5k + 2

+ Xét p = 5k + 1

=> 7p + 1 = 7 (5k + 1) + 1 = 35k + 7 + 1 = 35k + 8 (loại)

+ Xét p = 5k + 2

=> 7p + 1 = 7 (5k + 2) + 1 = 35k + 14 + 1 = 35k + 15 (loại)

                 Vậy p = 5

28 tháng 7 2023

nếu p = 2 thì 7p + 9 = 14 + 9 = 23 (thỏa mãn)

Nếu p>2 vì p là số nguyên tố nên p là số lẻ vậy p = 2k + 1 (k\(\in\)N)

⇒ 7p + 9 = 7.(2k+1) + 9 = 14k + 7+ 9 = 14k + 16 ⋮ 2 (loại)

Vậy p = 2 

28 tháng 7 2023

Để 7P +9 là số nguyên tố khi P=9-7=2

4 tháng 2 2020

Đặt 7p+1=n3(n>2)(n\(\inℕ\))

=>7p=(n-1)n(n+1)=(n-1)(n2+n+1) *

Xét p=2=>loại

Xét p>2=>p là số nguyên tố lẻ

Mà n2+n+1=n(n+1)+1 luôn lẻ

Từ * ta có \(\hept{\begin{cases}n-1=7\\n^2+n+1=p\end{cases}}\Leftrightarrow\hept{\begin{cases}n=8\\p=31\end{cases}}\)

                    (THOẢ MÃN)

Đặt 7p + 1 = n^3 (n > 2)

=> 7p = (n - 1)(n^2 + n + 1)

Ta có 2 TH :

TH1 : n -  1  = 7 \(\forall\)n^2 + n +1 = p => n = 8 => p = 73

TH2 : n - 1 = p \(\forall\) n^2 + n + 1 =7 => ....

30 tháng 7 2023

Lời giải:

Đặt 7�+1=�3 với  là số tự nhiên.

⇔7�=�3−1=(�−1)(�2+�+1)

Đến đây có các TH: 

TH1: �−1=7;�2+�+1=�

⇒�=8;�=73 (tm) 

TH2: �−1=�,�2+�+1=7

⇒�=2 hoặc �=−3

⇒�=1 hoặc �=−4 (không thỏa mãn) 

TH3: �−1=7�;�2+�+1=1 (dễ loại) 

TH4: �−1=1; �2+�+1=7� (cũng dễ loại)

Lý thuyết : 

Số nguyên tố là số tự nhiên lớn hơn 1 và chỉ có 2 ước là 1 và chính nó. Mọi số tự nhiên >1 bao giờ cũng có ước nguyên tố . 
- Hợp số là số tự nhiên lớn hơn 1 và có nhiều hơn 2 ước 
- Tập hợp số nguyên tố là vô hạn 
- Số 0 và 1 không phải là số nguyên tố; cũng không là hợp số 
- Số nguyên tố chẵn duy nhất là 2 
- Số a và b gọi là 2 số nguyên tố cùng nhau 
- p là số nguyên tố; p > 2 có dạng : p = 4n + 1 hoặc p= 4n+3 
- p là số nguyên tố; p > 3 có dạng : p = 6n +1 hoặc p =6n + 5 
- Ước nguyên tố nhỏ nhất của hợp số N là 1 số không vượt quá √N 
- số nguyên tố Mecxen có dạng 2^p - 1 (p là số nguyên tố ) 
- Số nguyên tố Fecma có dạng 2^(2n) + 1 (n Є N) 
Khi n = 5. Euler chỉ ra 2^(2.5) + 1 = 641.6700417 (hợp số ) 


Bài tập: 

Đặt 2p + 1 = n³ với n là số tự nhiên 

Cách giải: phân tích ra thừa số 
Dùng tính chất : Số nguyên tố có 2 ước là 1 và chính nó. 

Giải: 

♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³ 

♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 ) 
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ 

=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 ) 
<=> 2p + 1 = 8k³ + 12k² + 6k + 1 
<=> p = k(4k² + 6k + 3) 

=> p chia hết cho k 
=> k là ước số của số nguyên tố p. 

Do p là số nguyên tố nên k = 1 hoặc k = p 

♫ Khi k = 1 
=> p = (4.1² + 6.1 + 3) = 13 (nhận) 

♫ Khi k = p 
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1 
Do p > 2 => (4p² + 6p + 3) > 2 > 1 
=> không có giá trị p nào thỏa. 

Đáp số : p = 13

thay 2p+1 là 7p+1 nha 

thay vào mak tự làm sẽ thông minh hơn@@

2 tháng 9 2018

\(7p+1=a^3\)( a là số nguyên )

\(\Rightarrow7p=a^3-1\)

\(\Rightarrow7p=\left(a-1\right)\left(a^3+a+1\right)\)( Phân tích ra hằng đẳng thức )

\(\Rightarrow7p⋮a-1\)

Mà 7 và p đều là các số nguyên tố nên ta xét 2 trường hợp: 

Làm nốt đi xét các trường hợp rồi thay vô giải là xong nha :3

AH
Akai Haruma
Giáo viên
25 tháng 7 2023

Lời giải:

Đặt $7p+1=a^3$ với $a$ là số tự nhiên.

$\Leftrightarrow 7p=a^3-1=(a-1)(a^2+a+1)$

Đến đây có các TH: 

TH1: $a-1=7; a^2+a+1=p$

$\Rightarrow a=8; p=73$ (tm) 

TH2: $a-1=p, a^2+a+1=7$

$\Rightarrow a=2$ hoặc $a=-3$

$\Rightarrow p=1$ hoặc $p=-4$ (không thỏa mãn) 

TH3: $a-1=7p; a^2+a+1=1$ (dễ loại) 

TH4: $a-1=1; a^2+a+1=7p$ (cũng dễ loại)

25 tháng 7 2023

Ta thấy :

\(2^3=7.1+1\left(p=1\right)\)

\(4^3=7.9+1\left(p=9\right)\)

\(8^3=7.73+1\left(p=73\right)\)

\(16^3=7.585+1\left(p=585\right)\)

\(32^3=7.4681+1\left(p=4681\right)\)

.....

\(\left(2k\right)^3=7.4681+1\left(p=2k\right)\) (k là số chẵn, k>=1)

\(\Rightarrow p\in\left\{1;9;73;585;4681...\right\}\)

 

NV
20 tháng 3 2022

Do p là SNT nên \(p^4\) chỉ có các ước nguyên dương là \(1;p;p^2;p^3;p^4\)

\(\Rightarrow1+p+p^2+p^3+p^4=k^2\) với \(k\in N\)

\(\Rightarrow\left(2k\right)^2=4p^4+4p^3+4p^2+4p+4=\left(2p^2+p\right)^2+\left(3p^2+4p+4\right)>\left(2p^2+p\right)^2\)

Đồng thời: \(4p^4+4p^3+4p^2+4p+4=\left(2p^2+p+2\right)^2-5p^2< \left(2p^2+p+2\right)^2\)

\(\Rightarrow\left(2p^2+p\right)^2< \left(2k\right)^2< \left(2p^2+p+2\right)^2\)

\(\Rightarrow\left(2k\right)^2=\left(2p^2+p+1\right)^2\)

\(\Rightarrow4p^4+4p^3+4p^2+4p+4=\left(2p^2+p+1\right)^2\)

\(\Rightarrow p^2-2p-3=0\Rightarrow\left[{}\begin{matrix}p=-1\left(ktm\right)\\p=3\left(tm\right)\end{matrix}\right.\)

20 tháng 3 2022

Em cảm ơn ạ

đặt n^2+2006=a^2

=>2006=a^2-n^2

=>2006=(a-n)(a+n)

vì tích của a-n và a+n là 1 số chẵn nên trong 2 số sẽ có ít nhất 1 số chẵn (1)

mặt khác: a-n+(a+n)=2a là 1 số chẵn=> a-n và a+n phải cùng tính chẵn lẻ(2)

từ (1) và(2) suy ra a-n và a+n là 2 số chẵn

đặt a-n=2x;a+n=2y(x,y thuộc Z)

=>(a-n)(a+n)=2x.2y

=>2x.2y=2006

=>4xy=2006

vì x,y là số nguyên nên 2006 phải chia hết cho 4(vô lí, vì 2006 ko chia hết cho 4)

vậy ko tồn tại số nguyên n để n^2+2006 là 1 số chính phương

2/ vì n là số nguyên tố lơn hơn 3 nên n ko chia hết cho 3=>n có dạng 3k+1;3k+2

+) nếu n=3k+1

=>n^2+2006=(3k+1)^2+2006=9k^2+6k+2007 chia hết cho 3 và n^2+2006 lớn hơn 3=>n^2+2006 là hợp số

+)nếu n=3k+2

=>n^2+2006=(3k+2)^2+2006=9k^2+12k+2010 chia hết cho 3 và n^2+2006 lớn hơn 3=>n^2+2006 là hợp số

vậy n^2+2006 là hợp số với n>3

tick nha

28 tháng 1 2016

ko