K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2017

Ta có :

3n+2−2n+2+3n−2n3n+2−2n+2+3n−2n =3n.32−2n.22+3n−2n3n.32−2n.22+3n−2n

=3n.9−2n.4+3n−2n3n.9−2n.4+3n−2n =3n.(9+1)−2n.(4+1)3n.(9+1)−2n.(4+1)

=3n.10−2n.5=3n.10−2n−1.2.53n.10−2n.5=3n.10−2n−1.2.5 = 3n.10−2n−1.103n.10−2n−1.10

=10.(3n−2n−1)⋮1010.(3n−2n−1)⋮10

⇒3n+2−2n+2+3n−2n⋮10⇒3n+2−2n+2+3n−2n⋮10 (ĐPCM) 

TK NHA

3 tháng 12 2017

3n + 2−2n + 2 + 3n−2n3n + 2−2n + 2 + 3n−2n =3n.32−2n.22 + 3n−2n3n.32−2n.22 + 3n−2n
=3n.9−2n.4 + 3n−2n3n.9−2n.4 + 3n−2n =3n.(9 + 1)−2n.(4 + 1)3n.(9 + 1)−2n.(4 + 1)
=3n.10−2n.5 = 3n.10−2n−1.2.53n.10−2n.5 = 3n.10−2n−1.2.5 = 3n.10−2n−1.103n.10−2n−1.10
=10.(3n−2n−1)⋮1010.(3n−2n−1)⋮10
⇒3n + 2−2n + 2 + 3n−2n⋮10⇒3n + 2−2n + 2 + 3n−2n⋮10 (ĐPCM)
TK NHA. chúc bn hok tốt @_@

5 tháng 8 2018

a) Sử dụng định lí Fermat nhỏ: Với mọi \(n\inℕ\)\(p\ge2\)là số nguyên tố. Ta luôn có \(n^p-n⋮7\)

Dễ thấy 7 là số nguyên tố. Do đó \(n^7-n⋮7\)

Có thể sự dụng pp quy nạp toán học hay biến đổi đẳng thức rồi sử dụng pp xét từng giá trị tại 7k+n với 7>n>0

b)Ta có: \(2n^3+3n^2+n=2n^3+2n^2+n^2+n\)

\(=n^2\left(2n+1\right)+n\left(2n+1\right)\)

\(=n\left(n+1\right)\left(2n+1\right)\)

Ta thấy n(n+1) chia hết 2. Chỉ cần chứng minh thêm đằng thức trên chia hết cho 3

Đặt n=3k+1 và n=3k+2. Tự thế vài và CM

c) Tương tự: \(n^5-5n^3+4n=n^3\left(n^2-1\right)-4n\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n^3-4n\right)\)

\(=\left(n-1\right)\left(n+1\right)n\left(n^2-4\right)\)

\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)\)

Sắp xếp lại cho trật tự: \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

Dễ thấy đẳng thức trên chia hết cho 5

Mà ta có: \(n\left(n+1\right)\left(n+2\right)⋮3\)

Và \(\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮4\)

Và tích của hai số bất kì cũng chia hết cho 2

Vậy đẳng thức trên chia hết cho 3.4.2.5=120

Cậu cuối bn chứng minh cách tương tự. :)

Mik cảm ơn bn nhìu nha!!!!^-^!!!

Ta có :

B = 3n+3 - 2n+2 + 3n-1 - 2n+1 ( n ∈ N* )

=> B = ( 3n+3 + 3n-1 ) + ( 2n+3 - 2n+1 )

=> B = 3n-1 . ( 34 - 1 ) + 2n+1 . ( 22 + 1 )

=> B = 3n-1 . ( 81 - 1 ) + 2n+1 . ( 4 + 1 )

=> B = 3n-1 . 80 + 2n . 2 . 5

=> B = 3n-1 . 8 . 10 + 2n . 10

=> B = ( 3n-1 . 8 + 2n ) . 10 ⋮ 10 ( do 3n-1 . 8 + 2n ∈ N* với n ∈ N* )

Vậy với mọi số nguyên dương n thì B ⋮ 10

31 tháng 8 2021

ko ai làm đc à

16 tháng 8 2017

toán nâng cao à?

16 tháng 8 2017

Đúng rồi, bn giải nhanh giúp mk nha!

2 tháng 1 2017

Bn cũg z nè,chúc bn học giỏi và lun là con ngoan trò giỏi

Cho mk xin cái

2 tháng 1 2017

Mk nha

25 tháng 7 2017

a) Giả sử \(2n+3;4n+8\) chưa nguyên tố cùng nhau

\(\Leftrightarrow2n+3;4n+8\)có ước chung là số nguyên tố

Gọi \(d=ƯC\left(2n+3;4n+8\right)\)

\(\Leftrightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Leftrightarrow2⋮d\)

Vì \(d\in N;2⋮d\Leftrightarrow d=1;2\)

+) \(d=2\Leftrightarrow2n+3⋮2\) (vô lí)

\(\Leftrightarrow d=1\)

\(\Leftrightarrow2n+3;4n+8\)nguyên tố cùng nhau với mọi n

Câu b tương tự

Chúc b hc tốt!

25 tháng 7 2017

a)Gọi UCLN của 2n+3 và 4n+8 là d                        (d thuộc N*)

=>\(\hept{\begin{cases}2n+3\\4n+8\end{cases}}\)cùng chia hết cho d

=>(4n+8)-(2n+3) chia hết cho d

=>(4n+8)-2(2n+3) chia hết cho d

=>4n+8-4n-6 chia hết cho d

=>2 chia hết cho d

=>d thuộc Ư của 2

=>\(\orbr{\begin{cases}d=1\\d=2\end{cases}}\)

Có 2n+3 chia hết cho d

Mà 2n+3 là số lẻ nên d không thể = 2             (ước của số lẻ không =2)

=>d=1

=>UCLN(2n+3;4n+8)=1

Vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau

21 tháng 11 2016

giả sử n^2+n+2=k^2=> k^2>n^2<==>k>n (1) 
ta có n^2+n-2=k^2-4 
<==>(n-1)(n+2)=(k-2)(k+2) (2) 
@ nếu n=1 , k=2, đúng 
@ nếu n khác 1 
ta có n+2<k+2 (từ (1)) 
==> để (2) xẩy ra thì: n-1>k-2 
mà từ (1) ta có k-1>n-1 
nên: k-1>n-1>k-2 
do k-1 và k-2 hai hai số tự nhiên liên tiếp nên không thể tồn tại số tự nhiên nằm giữa chúng (n-1) 
vậy chỉ có n=1 là nghiệm!

22 tháng 11 2016

thanks nha