So sánh :
a) 119^20 và 2003^15
b) 3^39 và 11^21
Giải đầy đủ cho like
Cảm on các bạn rất nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(2^{13}< 2^{16}\)
Mà \(7.2^{13}\)
\(\Rightarrow7.2^{13}>2^{16}\)
b) Ta có: \(199^{20}=\left(199^4\right)^5\)
\(2003^{15}=\left(2003^3\right)^5\)
Vì \(199^4< 2003^3\)
Vậy \(199^{20}< 2003^{15}\)
c) Ta có: \(3^{39}=\left(3^{13}\right)^3\)
\(11^{21}=\left(11^7\right)^3\)
Vì \(3^{14}< 11^7\)
Vậy \(3^{39}< 11^{21}\)
a, Ta có : \(119^{20}=\left(119^4\right)^5=200533921^5\)
\(2003^{15}=\left(2003^3\right)^5=8036054027^5\)
Vì \(200533921< 8036054027\)nên \(200533921^5< 8036054027^5\)
hay \(119^{20}< 2003^{15}\)
Vậy \(119^{20}< 2003^{15}\)
b, Ta có : \(3^{39}=\left(3^{13}\right)^3=1594323^3\)
\(11^{21}=\left(11^7\right)^3=19487171^3\)
Vì \(1594323< 19487171\)nên \(1594323^3< 19487171^3\)
hay \(3^{39}< 11^{21}\)
Vậy \(3^{39}< 11^{21}\)
a/ 19920 = ( 1994)5 = 15682392015
200315 = ( 20033 )5 = 80360540275
1568239201<8036054027\(\Rightarrow\)19920 < 200315
b/ 339 = ( 313 )3 = 15943233
1121 = ( 117 )3 = 194871713
1594323<19487171\(\Rightarrow\)339 < 1121
Hk tốt
a. Ta có : \(199^{20}< 200^{20}=\left(8.25\right)^{20}=2^{60}.5^{40}< 2^{60}.5^{45}=\left(16.125\right)^{15}=2000^{15}< 2003^{15}\)
a)1714>1614=256>3211=222>3111
b)102330<102430=2300<2305=3261<3361
c)8217>8117=368>363=2721>2621
a) Ta có: 2003^152>2003^20>199^20
Vậy 2003^152>199^20
b) Ta có: 3^39=(3^13)^3=1594323^3
11^21=(11^7)^3=19487171^3
Vì 1594323^3<19487171^3 nên 3^39<11^21
Khó quá!