Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có : 3100 + 19990 = 23090 có tổng các chữ số là : 2 + 3 + 0 + 9 + 0 = 14
Vì 14 \(⋮̸\)3 nên 3100 + 19990 \(⋮̸\)3 => đpcm
Vậy 3100 + 19990 không chia hết cho 3
b. Gọi 4 số tự nhiên liên tiếp đó là : n , n +1 , n + 2 , n + 3 ( n \(\inℕ\))
Do đó tổng 4 số tự nhiên liên tiếp là : n + ( n + 1 ) + ( n + 2 ) + ( n + 3 ) = n + n + 1 + n + 2 + n + 3
= ( n + n + n + n ) + ( 1 + 2 + 3 )
= 4n + 6
Ta thấy 4n \(⋮\)4 mà 6 \(⋮̸\)4 nên 4n + 6 \(⋮̸\)4 => đpcm
Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4
Hok tốt
# owe
Ta có:
\(2^{200}.2^{100}=\left(2^2\right)^{100}.2^{100}=4^{100}.2^{100}=\left(4.2\right)^{100}=8^{100}\)
\(3^{100}.3^{100}=\left(3.3\right)^{100}=9^{100}\)
Vì \(8< 9\) nên \(8^{100}< 9^{100}\)
Vậy \(2^{200}.2^{100}< 3^{100}.3^{100}\)
\(#WendyDang\)
Ta có: 3A = 3.(1+3+32+33+...+399+3100)
3A = 3+32+33+...+3100+3101
Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)
2A = 3101−1
⇒ A = 3101−1
2
Vậy A = 3101−1
2
Ta thấy : \(\left\{{}\begin{matrix}3^{100}=\left(3^4\right)^{25}\\9^{990}=\left(3^2\right)^{990}=3^{1980}=\left(3^4\right)^{495}\end{matrix}\right.\)
Thấy 34 có chữ số tận cùng là 1 .
=> (34)25 và ( 34)495 có chữ số tận cùng là 1 .
=> \(\left(3^4\right)^{25}+\left(3^4\right)^{495}\) sẽ có chữ số tận cùng là 2 .
\(\Rightarrow\left(3^4\right)^{25}+\left(3^4\right)^{495}⋮2\)
=> ĐPCM
Ta có \(3\equiv1\left(mod2\right)\) \(\Rightarrow3^{100}\equiv1^{100}\equiv1\left(mod2\right)\)
9\(\equiv1\left(mod2\right)\) \(\Rightarrow9^{100}\equiv1^{100}\equiv1\left(mod2\right)\)
\(\Rightarrow3^{100}+9^{100}\equiv1+1\equiv2\equiv0\left(mod2\right)\)
\(\Rightarrow3^{100}+9^{100}⋮2\) Vậy...
A = 1 + 3 + 32 + 33 + ... + 3100
3A = 3 + 32 + 33 +34+ .... + 3101
3A - A = (3 + 32 + 34 + ... + 3101) - (1 + 3 + 32 + 33 + ... + 3100)
2A = 3 + 32 + 34 + ... + 3101 - 1 - 3 - 32 - 33 - ... - 3100
2A = (3 - 3) + (32 - 32) + ... + (3100 - 3100) + (3101 - 1)
2A = 3101 - 1
A = \(\dfrac{3^{101}-1}{2}\)
a: \(2A=2^1+2^2+...+2^{2022}\)
\(\Leftrightarrow A=2^{2022}-1\)
\(53.x+2-25=3100\)
\(53.x+2=3100+25\)
\(53.x+2=3125\)
\(53.x=3125-2\)
\(53.x=3123\)
\(x=3123:53\)
\(x=\dfrac{3123}{53}\)
2.So sánh 23100 va 32100
\(2^{3100}=\left(2^{31}\right)^{100}\)
\(3^{2100}=\left(3^{21}\right)^{100}\)
Vậy \(63^{100}=63^{100}\)
k nha
23100 < 32100
ủng hộ nha! 56767657585643634665756756834534645
1.27626194866294 nha (câu này phải sử dụng phần mềm lập trình để tính ra)
máy tính cầm tay không tính nổi ;)