Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tính tổng á :
\(A=3+3^2+3^3+3^4+...+3^{20}.\)
\(\Rightarrow3A=3^2+3^3+3^4+...3^{20}+3^{21}\)
\(\Rightarrow3A-A=\left(3^2+3^3+..+3^{21}\right)-\left(3+3^2+....+3^{20}\right)\)
\(\Rightarrow2A=3^{21}-1\)
\(\Rightarrow A=\frac{3^{21}-1}{2}\)
A=3+3/2+3/22+...+3/2a nên:
=> 2A = 6+3+3/2+3/22 +...+3/2a-1
=> A= 6 - 3/2a ( lấy 2A -A )
Vậy A=6-3/2a
A = 1+3+32+33+....+320
3A = 3+32+33+34+.....+321
2A = 3A - A = 321 - 1
=> A = \(\frac{3^{21}-1}{2}\)
\(M=1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+......+\frac{1}{3^{19}}-\frac{1}{3^{20}}\)
\(\Rightarrow\frac{1}{3}M=\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3^5}+.......+\frac{1}{3^{20}}-\frac{1}{3^{21}}\)
\(\Rightarrow\frac{1}{3}M+M=1+\frac{1}{3}+\frac{1}{3}-\frac{1}{3^{21}}\)
\(\Rightarrow\frac{4}{3}M=\frac{5}{3}-\frac{1}{3^{21}}\)\(\Rightarrow M=\frac{\frac{5}{3}-\frac{1}{3^{31}}}{\frac{4}{3}}\)
\(A=3+3^2+3^3+...+3^{20}\)
\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\)
\(A=3\left(1+3\right)+3^3\left(3+1\right)+...+3^{19}\left(1+3\right)\)
\(\Rightarrow A=4\left(3+3^3+...+3^{19}\right)\)
\(\Rightarrow A⋮4\)
12 . ( x - 1 ) : 3 = 43 + 23
12 . ( x - 1 ) : 3 = 64 + 8
12 . ( x - 1 ) : 3 = 72
12 . ( x - 1 ) = 72 . 3
12 . ( x - 1 ) = 216
x - 1 = 216 : 12
x - 1 = 18
x = 18 + 1
x = 19
A = 3 + 32 + 33 + 34 + ... + 320
3A = 32 + 33 + 34 + 35 + ... + 321
3A - A = (32 + 33 + 34 + 35 + ... + 321) - (3 + 32 + 33 + 34 + ... + 320)
2A = 321 - 3
A = \(\frac{3^{21}-3}{2}\)