Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x+y\right).\left(x^2-xy+y^2\right)-\left(x-y\right).\left(x^2+xy+y^2\right)=\left(x^3+y^3\right)-\left(x^3-y^3\right)=2y^3\)
=> Biểu thức A phụ thuộc vào giá trị của y
\(\left(x-1\right)^3+3x.\left(x-4\right)+1=0\Leftrightarrow x^3-3x^2+3x-1+3x^2-12x+1=0\)
\(\Leftrightarrow x^3-9x=0\Leftrightarrow x.\left(x^2-9\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}}\)
Vì |1/4 - x| ≥ 0; |x - y + z| ≥ 0; |2/3 + y| ≥ 0
=> |1/4 - x| + |x - y + z| + |2/3 + y| ≥ 0
Dấu " = " xảy ra <=>. \(\hept{\begin{cases}\frac{1}{4}-x=0\\x-y+z=0\\\frac{2}{3}+y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\\frac{1}{4}-y-\frac{2}{3}=0\\y=\frac{-2}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\y=\frac{-5}{12}\\z=\frac{-2}{3}\end{cases}}\)
Vậy ....
Từ \(\hept{\begin{cases}x-y=-10\\xy=-2\end{cases}\Rightarrow\hept{\begin{cases}x=y-10\\\left(y-10\right)y=-2\end{cases}\Rightarrow}\hept{\begin{cases}x=y-10\\y^2-10y+2=0\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=y-10\\y=5+\sqrt{23};y=5-\sqrt{23}\end{cases}\Rightarrow\orbr{\begin{cases}x=-5+\sqrt{23};y=5+\sqrt{23}\\x=-5-\sqrt{23};y=5-\sqrt{23}\end{cases}}}\)
Với \(x=-5+\sqrt{23};y=5+\sqrt{23}\Rightarrow\left|x+y\right|=2\sqrt{23}\)
Với \(x=-5-\sqrt{23};y=5-\sqrt{23}\Rightarrow\left|x+y\right|=\left|-2\sqrt{23}\right|=2\sqrt{23}\)
\(x\left[\left(x+y\right)^2-\left(x-y\right)^2\right]\\ =x\left[\left(x+y-x+y\right)\left(x+y+x-y\right)\right]\\ =x.2y.2x\\ =4x^2y\)
\(x\left[\left(x+y\right)^2-\left(x-y\right)^2\right]\)
\(=x\left[x^2+2xy+y^2-\left(x^2-2xy+y^2\right)\right]\)
\(=x\left(x^2+2xy+y^2-x^2+2xy-y^2\right)\)
\(=x\cdot4xy\)
\(\)\(=4x^2y\)
x^2 + xy + y^2 + 1 > 0 với mọi x, y;
ta có x^2+xy+y^2+1=(x^2+2x.y/2+y^2/4)+-y^2/4+y^2+1=(x+y/2)^2+3y^2/4+1
ta có (x+y/2)^2>=0 với mọi x, y
3y^2/4>=0 với mọi y
=>(x+y/2)^2+3y^2/4+1>0 với mọi x, y
2,4x^2 + 4x + 11 > 0 với mọi x
ta có 4x^2+4x+11=4x^2+4x+1+10=(2x+1)^2+10> 0 với mọi x
3,x^2-2x+y^2-4y+7>0 với mọi x,y
ta có x^2-2x+y^2-4y+7
=(x^2-2x+1)+(y^2-4y+4)+1
=(x-1)^2+(y-2)^2+1>0 với mọi x,y
Có gì khó hiểu đâu.
Bạn có thể xem 1 số video các thầy cô giảng cho dễ nhé
Hk tốt và nhớ k mk nha.
\(\left(X^2+2x+1\right)+\left(4y^2+\frac{4.1y}{4}+\frac{1}{16}\right)+2-\frac{1}{16}.\)
\(\left(x+1\right)^2+\left(2y+\frac{1}{4}\right)^2+\frac{15}{16}\ge\frac{15}{16}\)
\(x^2+4y^2+2x-y+2\)
\(=\left(x^2+2x+1\right)+\left[\left(2y\right)^2-2.2y.\frac{1}{4}+\left(\frac{1}{4}\right)^2\right]+\frac{15}{16}\)
\(=\left(x+1\right)^2+\left(2y-\frac{1}{4}\right)+\frac{15}{16}\)
Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(2y-\frac{1}{4}\right)\ge0\forall y\end{cases}\Rightarrow\left(x+1\right)^2+\left(2y-\frac{1}{4}\right)+\frac{15}{16}\ge\frac{15}{16}}\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(2y-\frac{1}{4}\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\2y-\frac{1}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=\frac{1}{8}\end{cases}}}\)
Vậy GTNN của \(x^2+4y^2+2x-y+2=\frac{15}{16}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{8}\end{cases}}\)
Tham khảo nhé~