K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 4 2016

1. Vì BO vuông góc với BA => góc ABO = 90 độ 
    Vi CO vuông góc với CA => góc ACO = 90 độ 

Xét tứ giác ABOC có : Góc ABC = 90 độ, Góc ACO = 90 độ 

mà 2 góc trên đối nhau và có tổng = 180 độ

=> tứ giác ABOC là tứ giác nội tiếp đường tròn.

Nối A với O, ta được tam giác ABO vuông tại B. 

Vẽ trung tuyến BI của tam giác ABO => IO = IA = IB

=> I là tâm đường tròn ngoại tiếp tứ giác ABOC. 

2. Câu này câu hỏi là gì vậy?

3, 

                            

6 tháng 4 2017

1. có góc B cộng  góc C bằng 180 độ ( tiế vậy nó nội tip tuyến ĐT) vậy nó nội tiếp

2. xét 2 tam giác ABE và tam giác AFB chứng minh nó đồng dạng (g,g), vì góc A chung, góc F bằng góc ABE = 1/2 Sđ cung BE. rồi lập tì số đồng dạng là được.

3. Chưa làm được. nếu bạn làm được rối thông tin cho mình nhé. cảm ơn

6 tháng 4 2017

Mk mới có lớp 8 sorry bạn nha!

1: góc ABO+góc ACO=180 độ

=>ABOC nội tiếp đường tròn đường kính OA

Tâm là trung điểm của OA

2: Xét ΔABE và ΔAFB có

góc ABE=góc AFB

góc BAE chung

=>ΔABE đồng dạng với ΔAFB

=>AB/AF=AE/AB

=>AB^2=AE*AF

 

7 tháng 5 2018

1) Ta có \(\widehat{ABO}=\widehat{ACO}=90độ\left(gt\right)\)

Do đó\(\widehat{ABO}+\widehat{ACO}=180độ\)

Nên tứ giác ABOC nội tiếp đường tròn đường kính AO

Tâm đường tròn ngoại tiếp tứ giác ABOC là trung điểm AO.

2) Xét ΔABD và ΔAEB có

\(\widehat{BAE}\)chung

\(\widehat{ABD}=\widehat{AEB}\)(góc tạo bởi tia tiếp tuyến và dây và góc nội tiếp cùng chắn \(\widebat{BD}\))

Nên ΔABD {\displaystyle \backsim } ΔAEB

Do đó \(\frac{AB}{AE}\)=\(\frac{AD}{AB}\)

Hay AB2= AE.AD

21 tháng 11 2018

các bạn giúp mình với ạ .mình cám ơn

4 tháng 1 2021

Góc HCF sao lại bằng góc FCA vậy mn ???

30 tháng 11 2023

a) Nhận thấy \(\widehat{OBA}=\widehat{OCA}=90^o\) nên tứ giác ABOC nội tiếp đường tròn đường kính OA.

b) Nhân thấy \(\widehat{OID}=\widehat{OBD}=90^o\) nên tứ giác OIBD nội tiếp đường tròn đường kính OD \(\Rightarrow\widehat{IDO}=\widehat{IBO}\)

 Lại có \(\widehat{IBO}=\widehat{CBO}=\widehat{BCO}\) nên dễ dàng suy ra đpcm.

c) Dễ chứng minh tứ giác OCFI nội tiếp \(\Rightarrow\widehat{OCB}=\widehat{OCI}=\widehat{OFI}=\widehat{OFD}\) 

Theo câu b, ta có \(\widehat{FDO}=\widehat{IDO}=\widehat{BCO}\) nên dẫn đến \(\widehat{OFD}=\widehat{FDO}\). Do đó tam giác ODF cân tại O. (đpcm)

d) Tam giác ODF cân tại F có đường cao OI nên I là trung điểm DF.

Mặt khác, có I là trung điểm BE nên tứ giác BDEF là hình bình hành.

\(\Rightarrow\) EF//BD hay EF//AB.

Lại có E là trung điểm BC nên F là trung điểm AC (đpcm)