Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^a+25\)
\(+,a=0\Rightarrow5^a+25=26\left(l\right)\)
\(+,a=1\Rightarrow5^a+25=30\left(l\right)\)
\(+,a=2\Rightarrow5^a+25=50\left(l\right)\)
\(+,a=3\Rightarrow5^a+25=150\left(l\right)\)
\(+,a\ge4\Rightarrow5^a=\left(....25\right)+25=\left(....50\right)\Rightarrow\hept{\begin{cases}5^a+25⋮2\\5^a+25⋮4̸\end{cases}}\left(l\right)\)
a/ Ta có: `2a = 3b => a/3 = b/2`
Đặt `a/3 = b/2 = k` \(\left(k\ne0\right)\)
`=> a = 3k ; b = 2k`
`=> M =`\(\dfrac{\left(3k\right)^3-2.3k.\left(2k\right)^2+\left(2k\right)^3}{\left(3k\right)^2.2k+3k.\left(2k\right)^2+\left(2k\right)^3}=\dfrac{27k^3-24k^3+8k^3}{18k^3+12k^3+8k^3}=\dfrac{11k^3}{38k^3}=\dfrac{11}{38}\)
Vậy `M = 11/38`.
b/ Giả sử tồn tại số chính phương `a^2` có tổng các số tự nhiên là 20142015
Vì \(20142015⋮3\) nên \(a^2⋮3\)
\(\Rightarrow a^2⋮3^2\)
\(\Rightarrow a^2⋮9\)
Mà \(20142015⋮9̸\Rightarrow a^2⋮9̸\) (vô lí)
`=>` Không tồn tại số chính phương `a^2` nào có tổng các số tự nhiên là 20142015
\(\Rightarrow\) 1 số tự nhiên có tổng các chữ số là `20142015` không phải là số chính phương (đpcm)
a, 3n + 2 - 2n + 2 + 3n - 2n
= 3n(32 + 1) - 2n(22 + 1)
= 10.3n - 5.2n
= 10.3n - 10.2n - 1
= 10(3n - 2n - 1) chia hết cho 10
b, S = abc + bca + cab
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= 111a + 111b + 11c
= 111(a + b + c)
= 3.37(a+b+c)
giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn trở lên
=> 3(a + b + c) chia hết cho 37
=> a + b + c chia hết cho 37
vì a;b;c là chữ số => a + b + c lớn nhất = 27
=> vô lí
vậy S không là số chính phương
\(3^{n+2}-2^{n+2}+3^n-2^n\)
= \(3^{n+2}+3^n-2^n-2^{n+2}\)
=\(\left(3^{n+2}+3^n\right)-\left(2^n-2^{n+2}\right)\)
= \(\left(3^n.3^2+3^n\right)-\left(2^n+2^n.2^2\right)\)
= \(3^n.\left(3^2+1\right)-2^n.\left(1+2^2\right)\)
=\(3^n.10-2^{n-1}.5.2\)
= \(3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10
suy ra \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10