K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2018

Số phần tử của không gian mẫu là số cách chọn 4 đỉnh trong 32 đỉnh để tạo thành tứ giác,  Ω = C 32 4

Gọi A là biến cố "chọn được hình chữ nhật".

Để chọn được hình chữ nhật cần chọn 2 trong 16 đường chéo đi qua tâm của đa giác, do đó số phần tử của A là  C 16 2

Chọn D

9 tháng 4 2016

a﴿ Tam giác ABC có MA=MC; NA=NB nên MN là đường trung bình của tam giác ABC

=> MN//BC; MN=1/2BC ﴾1﴿.

Tam giác BGC có PG=BP; QG=QC nên PQ là đường trung bình của tam giác BGC

=> PQ//BC; PQ=1/2BC ﴾2﴿.

từ ﴾1﴿ và ﴾2﴿

suy ra MN//PQ; MN=1/2PQ.

Tứ giác MNPQ có MN//PQ; MN=1/2PQ.

vậy MNPQ là hình bình hành.

b﴿ câu này là dạng tìm điều kiện là dạng khó nhất trong ba dạng là dễ nhất là chứng minh tứ giác là hình gì, mình chỉ cần thuộc lí thuyết dò sẽ ra; tiếp theo là tứ giác này là hình gì, mình phải tự tìm; cuối cùng là dạng tìm điều kiện để trở thành hình khác thì mình phải giả sử một đặc điểm để trở thành hình đó rồi tìm mối tương quan.

c1:Để hình bình hành MNPQ là hình chữ nhật, ta cần có thêm Một góc vuông.

Giả sử GÓc N=90 độ Nối AG. Vì NA=NB;PQ=PB nên NP là đường trung bình của tam giác ABG

=> NP//AG mà NP vuông góc với MN.

từ hai điều này suy ra AG cũng vuông góc với MN. lại có MN//BC﴾cmt﴿

từ hai điều này lại suy ra AG vuông góc với BC.

tam giác ABC có AG vừa là đường trung tuyến vừa là đường cao nên tam giác ABC cân tại A Vậy khi tam giác ABC cân tại A thì hình bình hành MNPQ là hình chữ nhật.

C2: Để hình bình hành MNPQ là hình chữ nhật, ta cần có thêm hai đuognừ chéo bằng nhau Giả sử MP=NQ ﴾1﴿

ta có: MNPQ là hình bình hành nên GN=GQ; GP=GM G là trọng tâm của tam giác ABC nên BP=1/3BM; CQ=1/3CN.

từ hai điều này suy ra: BP=1/2MP; CQ=1/2QN ﴾2﴿

Từ ﴾1﴿ và ﴾2﴿ suy ra MP+BP=NQ+CQ hay BM=CN

Tam giác ABC có hai đuognừ trung tuyến bằng nhau nên tam giác ABC cân tại A

 Vậy khi tam giác ABC cân tại A thì hình bình hành MNPQ là hình chữ nhật.

Bởi vì cách 2 nó có cái điều mà mình tự cm ở lớp 7 nên nhiều khi không hay

c﴿Nếu BM và CN vuông góc với nhau hay PM và QN cũng vuông góc với nhau.

Hình bình hành MNPQ có hai đuognừ chéo PM và QN vuông góc với nhau, nên MNPQ là hình thoi

Vậy nếu Nếu BM và CN vuông góc với nhau thì MNPQ là hình thoi 

 

26 tháng 5 2017

Đáp án là câu A.

31 tháng 8 2018

2 tháng 12 2018

Đáp án B

1 tháng 7 2019

Đáp án đúng : B

11 tháng 1 2018

Đáp án đúng : A

29 tháng 4 2016
Ví dụ 2.png 

Gọi H là trung điểm của BC.
Ta có tam giác ABC đều nên AH (BCD) , mà (ABC)  (BCD) → AH  (BCD).
Ta có AH HD→AH = AD.tan600 =a3 & HD = AD.cot600 =a33
ΔBCD→BC = 2HD = 2a33suy ra V=13SBCD.AH=13.12BC.HD.AH=a339

Ví dụ 2.png 

Gọi H là trung điểm của BC.
Ta có tam giác ABC đều nên AH (BCD) , mà (ABC)  (BCD) → AH  (BCD).
Ta có AH HD→AH = AD.tan600 =a3 & HD = AD.cot600 =a33
ΔBCD→BC = 2HD = 2a33suy ra V=13SBCD.AH=13.12BC.HD.AH=a339

Ví dụ 2.png 

Gọi H là trung điểm của BC.
Ta có tam giác ABC đều nên AH (BCD) , mà (ABC)  (BCD) → AH  (BCD).
Ta có AH HD→AH = AD.tan600 =a3 & HD = AD.cot600 =a33
ΔBCD→BC = 2HD = 2a33suy ra V=13SBCD.AH=13.12BC.HD.AH=a339

30 tháng 10 2018

Đáp án A