Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(sin^2a+cos^2a\right)\left(sin^4a-sin^2acos^2a+cos^4a\right)+3sin^2acos^2a\)
A = \(sin^4+2sin^2acos^2a+cos^4a=\left(sin^2a+cos^2a\right)^2=1\)
\(P=3sin^22a+4cos^22a\)
\(\Rightarrow P=3sin^22a+3cos^22a+cos^22a\)
\(\Rightarrow P=3\left(sin^22a+cos^22a\right)+\left(2cos^2a-1\right)^2\)
\(\Rightarrow P=3.1+\left(2.\dfrac{1}{9}-1\right)^2\left(cosa=\dfrac{1}{3}\right)\)
\(\Rightarrow P=3+\left(-\dfrac{7}{9}\right)^2\)
\(\Rightarrow P=3+\dfrac{49}{81}\)
\(\Rightarrow P=\dfrac{292}{81}\)
Chia cả tử và mẫu cho \(sin^3x\)
\(D=\dfrac{sin^3x-2cos^3x}{3sin^3x+4cos^3x}=\dfrac{\dfrac{sin^3x}{sin^3x}-\dfrac{2cos^3x}{sin^3x}}{\dfrac{3sin^3x}{sin^3x}+\dfrac{4cos^3x}{cos^3x}}=\dfrac{1-2cot^3x}{3+4cot^3x}=\dfrac{1-2.3^3}{3+4.3^3}=...\)
A = sin6α+ 3sin2α .cos2α + cos6α = sin6α + 3sin2α .cos2α ( sin2α + cos2α ) + cos6α = sin6α + 3sin4 α .cos2α + 3sin4α .cos4α + cos6α = (sin2α + cos2α )2 |
= 1
1:
a: sin a=căn 3/2
\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)
\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)
cot a=1/tan a=1/căn 3
b: \(tana=2\)
=>cot a=1/tan a=1/2
\(1+tan^2a=\dfrac{1}{cos^2a}\)
=>\(\dfrac{1}{cos^2a}=5\)
=>cos^2a=1/5
=>cosa=1/căn 5
\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)
c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)
tan a=5/13:12/13=5/12
cot a=1:5/12=12/5
a) Ta có: \(\sin^2\alpha+\cos^2\alpha=1\)
\(\Leftrightarrow\cos^2\alpha=1-\dfrac{9}{25}=\dfrac{16}{25}\)
Ta có: \(A=5\cdot\sin^2\alpha+6\cdot\cos^2\alpha\)
\(=5\left(\sin^2\alpha+\cos^2\alpha\right)+\cos^2\alpha\)
\(=5+\dfrac{16}{25}=\dfrac{141}{25}\)
vậy thì chệu gồi tại B với aphla không liện quan nên không tính được nha bạn
ta có\(tan=\frac{sin}{cos}=\frac{1}{2}\Rightarrow2sin=cos\)
=>\(A=\frac{3sin-8sin}{10sin+6sin}=-\frac{5}{16}\)
Lời giải:
$\cos ^2a=1-\sin ^2a=1-(\frac{1}{2})^2=\frac{3}{4}$
$\Rightarrow \cos a=\pm \frac{\sqrt{3}}{2}$
Nếu $\cos a=\frac{\sqrt{3}}{2}$ thì:
$A=3\sin a+4\cos a=3.\frac{1}{2}+4.\frac{\sqrt{3}}{2}=\frac{3+4\sqrt{3}}{2}$
Nếu $\cos a=\frac{-\sqrt{3}}{2}$ thì:
$A=3\sin a+4\cos a=3.\frac{1}{2}+4.\frac{-\sqrt{3}}{2}=\frac{3-4\sqrt{3}}{2}$