Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\cos ^2a=1-\sin ^2a=1-(\frac{1}{2})^2=\frac{3}{4}$
$\Rightarrow \cos a=\pm \frac{\sqrt{3}}{2}$
Nếu $\cos a=\frac{\sqrt{3}}{2}$ thì:
$A=3\sin a+4\cos a=3.\frac{1}{2}+4.\frac{\sqrt{3}}{2}=\frac{3+4\sqrt{3}}{2}$
Nếu $\cos a=\frac{-\sqrt{3}}{2}$ thì:
$A=3\sin a+4\cos a=3.\frac{1}{2}+4.\frac{-\sqrt{3}}{2}=\frac{3-4\sqrt{3}}{2}$
Lời giải:
Biểu thức $A$ dạng như vậy là gọn rồi bạn ạ. Biến đổi thêm cũng không có ý nghĩa.
----------
\(B=\sin ^2a+\sin 2a-3\cos ^3a\)
----------
\(C=\frac{\sin ^2a-\sin a\cos a-\cos ^2a}{2\sin a\cos a}=\frac{\sin a}{2\cos a}-\frac{1}{2}-\frac{\cos a}{2\sin a}\)
\(=\frac{\tan a-1-\cot a}{2}\)
Những biểu thức này đều không tính toán ra được giá trị cụ thể nên không phù hợp với yêu cầu "tính". Mình nghĩ bạn nên xem xét lại yêu cầu đề.
vậy thì chệu gồi tại B với aphla không liện quan nên không tính được nha bạn
ta có\(tan=\frac{sin}{cos}=\frac{1}{2}\Rightarrow2sin=cos\)
=>\(A=\frac{3sin-8sin}{10sin+6sin}=-\frac{5}{16}\)
Hè năm ngoái tôi bị mắc dạng này ^^ Và tôi tự mò ra .... vài thứ...
(sina^2)^3+sosa^2)^3 = (sina^2 +cosa^2)(sina^4 -sina^2cosa^2 + cos^4 ) Chú ý sina^2 +cosa^2=1
= > B=(sina^4 -sina^2cosa^2 + cos^4 )+ 3 sina^2cosa^2 = ( sina^2 + cosa^2)^2 = 1^2 = 1 ^^
\(P=3sin^22a+4cos^22a\)
\(\Rightarrow P=3sin^22a+3cos^22a+cos^22a\)
\(\Rightarrow P=3\left(sin^22a+cos^22a\right)+\left(2cos^2a-1\right)^2\)
\(\Rightarrow P=3.1+\left(2.\dfrac{1}{9}-1\right)^2\left(cosa=\dfrac{1}{3}\right)\)
\(\Rightarrow P=3+\left(-\dfrac{7}{9}\right)^2\)
\(\Rightarrow P=3+\dfrac{49}{81}\)
\(\Rightarrow P=\dfrac{292}{81}\)