Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x\left(x+2\right)=\left(x+2\right)^2\\ \Leftrightarrow3x\left(x+2\right)-\left(x+2\right)^2=0\\ \Leftrightarrow\left(x+2\right)\left(3x-x-2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(2x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
Vậy phương trình có tập nghiệm là: \(S=\left\{-2;1\right\}\)
\(3x\left(x+2\right)=\left(x+2\right)^2\\ \Leftrightarrow3x\left(x+2\right)=\left(x+2\right)\left(x+2\right)\\ \Leftrightarrow3x\left(x+2\right)-\left(x+2\right)\left(x+2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(3x-\left(x+2\right)\right)=0\\ \Leftrightarrow\left(x+2\right)\left(3x-x-2\right)=0\\ \Leftrightarrow\left(x+2\right)\left(2x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\2x=2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x=1\end{matrix}\right.\)
Vậy : \(S=\left\{-2,1\right\}\)
a) Ta có: \(\frac{x+a}{x+2}+\frac{x-2}{x-a}=2\left(1\right)\)
Với a = 4
Thay vào phương trình (t) ta được:
\(\frac{x+2}{x+2}+\frac{x-2}{x-2}=2\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow x^2-4+x^2-4=2\left(x^2-4\right)\)
\(\Leftrightarrow2x^2=2x^2-8\)
\(\Leftrightarrow0x=-8\)
Vậy phương trình vô nghiệm
b) Nếu x = -1
\(\Rightarrow\frac{-1+a}{-1+2}+\frac{-1-2}{-1-a}=2\)
\(\Leftrightarrow\frac{-1+a}{1}+\frac{-3}{-1-a}=2\)
\(\Leftrightarrow\frac{\left(-1+a\right)\left(-1-a\right)}{-1-a}+\frac{-3}{-1-a}=\frac{2\left(-1-a\right)}{-1-a}\)
\(\Leftrightarrow1+a-a-a^2-3=-2-2a\)
\(\Leftrightarrow-a^2+2a=-2-1+3\)
\(\Leftrightarrow a\left(2-a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=0\\2-a=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)
Vậy a = {0;2}
NĂM MỚI VUI VẺ
Hình như đề của bạn sai nên mình sửa lại nhé
x4 + 2x3 +5x2 +4x-12=0
⇔x4-x3+3x3-3x2+8x2-8x+12x-12=0
⇔x3(x-1)+3x2(x-1)+8x(x-1)+12(x-1)=0
⇔(x-1)(x3+3x2+8x+12)=0
⇔(x-1)(x+2)(x2+x+6)=0
ta có x2+x+6 >0 ∀x
⇔\(\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy...
x2(x+2)2+4x2=12(x+2)2
=>x2(x+2)2+4x2-12(x+2)2=0
VT=(x2-2x-4)(x2+6x+12)
pt trở thành (x2-2x-4)(x2+6x+12)=0
=>x2-2x-4=0 hoặc x2+6x+12=0
Th1:x2-2x-4=0
denta:(-2)2-(-4(1.4))=20
x1:(2+\(\sqrt{20}\)):2=1+\(\sqrt{5}\)
x2:(2-\(\sqrt{20}\)):2=\(\sqrt{5}\)+1
Th2:x2+6x+12=0
denta:62-4(1.12)=-12
=>\(\Delta< 0\)
=>vô nghiệm
vậy pt có nghiệm là 1-\(\sqrt{5}\)và \(\sqrt{5}\)+1