Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(P=\left(\dfrac{2}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\cdot\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)
\(=\dfrac{2\sqrt{x}+2+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)
\(=\dfrac{\sqrt{x}}{x-1}\)
\(P=\left(\dfrac{2}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right).\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)
\(\Rightarrow P=\dfrac{2\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)
\(\Rightarrow P=\dfrac{x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)
\(\Rightarrow P=\dfrac{\sqrt{x}}{x-1}\)
\(\Rightarrow P=\dfrac{\sqrt{3+2\sqrt{2}}}{3+2\sqrt{2}-1}\)
\(\Rightarrow P=\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}}{2+2\sqrt{2}}\)
\(\Rightarrow P=\dfrac{\sqrt{2}+1}{2\left(\sqrt{2}+1\right)}\)
\(\Rightarrow P=\dfrac{1}{2}\)
x + 3y = x(5y - 1) (1)
1/x - 3/y = -2 (2)
(1) ⇔ x(5y - 1) - x = 3y
⇔ x(5y - 2) = 3y
⇔ x = 3y/(5y - 2) (3)
Thế (3) vào (2) ta được:
(2) ⇔ 1/[3y/(5y - 2)] - 3/y = -2
⇔ (5y - 2)/3y - 3/y = -2
⇔ 5y - 2 - 9 = -6y
⇔ 5y + 6y = 11
⇔ 11y = 11
⇔ y = 1 thế vào (3) ta được:
x = 3.1/(5.1 - 2) = 1
Vậy S = {(1; 1)}
a: \(P=\dfrac{\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{x-4}{4}=\dfrac{\sqrt{x}}{2}\)
a: Thay x=-2 vào (1), ta được:
4+8+2m-1=0
=>2m+11=0
hay m=-11/2
b: \(\text{Δ}=\left(-4\right)^2-4\left(2m-1\right)\)
=16-8m+4
=-8m+20
Để phương trình có hai nghiệm phân biệt thì -8m+20>0
=>-8m>-20
hay m<5/2
Theo đề, ta có: \(x_1^2+x_2^2+x_1x_2=m^2-2m\)
\(\Leftrightarrow m^2-2m=\left(x_1+x_2\right)^2-x_1x_2\)
\(\Leftrightarrow m^2-2m=\left(-4\right)^2-\left(2m-1\right)\)
\(\Leftrightarrow m^2-2m=16-2m+1=17\)
hay \(m=-\sqrt{17}\)
a, Vì SA ; SB lần lượt là tiếp tuyến (O) với A;B là tiếp điểm
nên ^SAO = ^SBO = 900
Xét tứ giác SAOB ta có
^SAO + ^SBO = 1800
mà 2 góc này đối
Vậy tứ giác SAOB là tứ giác nt 1 đường tròn
b, Vì H là trung điểm CD => OH vuông CD
Xét tứ giác AHOS có
^OHS = ^OAS = 900
mà 2 góc này kề, cùng nhìn cạnh OS
Vậy tứ giác AHOS là tứ giác nt 1 đường tròn
=> ^OAH = ^OSH ( góc nt chắn cung HO )
c, Xét tam giác SAC và tam giác SDA ta có
^S _ chung
^SAC = ^SDA (cùng chắn cung AC )
Vậy tam giác SAC ~ tam giác SDA (g.g)
\(\dfrac{SA}{SD}=\dfrac{SC}{SA}\Rightarrow SA^2=SC.SD\)(1)
Ta có ^SAB = ^SBA do SA = SB ( tiếp tuyến cắ nhau )
mà ^AHS = ^AOS ( góc nt chắn cung AS của tứ giác ASOH )
Mặt khác ^AOS = ^SBA ( góc nt chắn cung AS của tứ giác ASBO )
=> ^SAE = ^SHA
Xét tam giác SAE và tam giác SHA ta có
^S _ chung
^SAE = ^SHA (cmt)
Vật tam giác SAE ~ tam giác SHA (g.g)
\(\dfrac{SA}{SH}=\dfrac{SE}{SA}\Rightarrow SA^2=SE.SH\)(2)
Từ (1) ; (2) suy ra \(SE.SH=SC.SD\)
Đâu
giúp gì