K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2019

Ta có :

M = | x - 2015 | + | x - 2016 | + | x - 2017 |

M = | x - 2015 | + | x - 2016 | + | 2017 - x |

M = | x - 2015 | + | x - 2016 | + | 2017 - x | \(\ge\)| x - 2015 + 2017 - x | + | x - 2016 | = 2 + | x - 2016 | \(\ge\)2

Dấu = xảy ra \(\Leftrightarrow\)( x - 2015 )( 2017 - x )\(\ge\)0 ( loại ) và x - 2016 = 0 \(\Rightarrow\)x = 2016 ( chọn )

Vậy : Min M = 2 \(\Leftrightarrow\)x = 2016

9 tháng 12 2019

Ta có: \(x^2\ge0;\left|x+y\right|\ge0;\forall x,y\)

=> \(M=2015+3\left(x^2+1\right)^{2016}+\left|x+y\right|^{2017}\)

\(\ge2015+3\left(0+1\right)^{2016}+0^{2017}=2018\)

Dấu "=" xảy ra khi và chỉ khi: \(\hept{\begin{cases}x^2=0\\\left|x+y\right|=0\end{cases}\Leftrightarrow x=y=0}\)

Vậy gtnn của M = 2018 đạt tại x = y = 0.

16 tháng 12 2020

Ta có:

\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\\ =\left|x-2015\right|+\left|x-2016\right|+\left|2017-x\right|+\left|2018-x\right|\\ \ge\left|x-2015+2017-x\right|+\left|x-2016+2018-x\right|\\ =2+2\\ =4\)

Dấu bằng xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left(x-2015\right)\left(2017-x\right)\ge0\\\left(x-2016\right)\left(2018-x\right)\ge0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2015\le x\le2017\\2016\le x\le2018\end{matrix}\right.\\ \Leftrightarrow2016\le x\le2017\)

29 tháng 4 2017

Ta có các TH:

+/ x-1\(\ge\)0 => x\(\ge\)1=> Ix-1I=x-1 và I1-xI=x-1

Phương trình tương đương: 2016(x-1)+(x-1)2=2015(x-1)

<=> (x-1)+(x-1)2=0  <=> (x-1)(1+x-1)=0

<=> x(x-1)=0 => x=0 (Loại) và x=1 (Chọn)

+/ x-1< 0 => x<1=> Ix-1I=1-x và I1-xI=1-x

Phương trình tương đương: 2016(1-x)+(x-1)2=2015(1-x)

<=> (1-x)+(x-1)2=0  <=> (x-1)(-1+x-1)=0

<=> (x-1)(x-2)=0 => x=1 (Loại) và x=2 (Loại)  vì x<1

ĐS: x=1

29 tháng 4 2017

Suy ra 2016 . |x-1| - 2015. |1-x| + ( x-1 )^2 =0 ( chuyển vế)

 suy ra |x-1| (2016-2015) + (x-1)^2 =0 ( đổi |1-x| thành |x-1| rồi phân phối)

suy ra |x-1| . 1 + (x-1)^2 =0

Suy ra |x-1| + (x-1)^2 =0

Vì | x-1| >=0, mọi x

     (x-1)^2 >=0, mọi x

suy ra |x-1| + (x-1)^2 >= 0, mọi x

dấu ' = ' xảy ra <=> (x-1) =0 hoặc (x-1)^2 =0

Tính ra thì cả 2 kết quả đều ra x=1 

vậy x=1

Ko tránh khỏi thiếu sót, nếu sai ai đo sửa lại nhé. thắc mắc gì thì cứ hỏi

_Hết_

10 tháng 7 2017

a) \(\frac{x+2015}{5}+\frac{x+2015}{6}=\frac{x+2015}{7}+\frac{x+2015}{8}\)

\(\frac{x+2015}{5}+\frac{x+2015}{6}-\frac{x+2015}{7}-\frac{x+2015}{8}=0\)

\(\left(x+2015\right).\left(\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}\right)=0\)

vì \(\frac{1}{5}+\frac{1}{6}-\frac{1}{7}-\frac{1}{8}\ne0\)

\(\Rightarrow\)x + 2015 = 0

\(\Rightarrow\)x = -2015

b) Tương tự

29 tháng 10 2016

GTNN A= 2 khi x=2016

12 tháng 2 2018

bn lập bảng xét dấu rồi xét 4 khoảng nhé!!

11 tháng 3 2019

Ta có: \( \left|x-2015\right|=\left|2015-x\right|\)

Ta lại có: \(\left|2015-x\right|+\left|x-2017\right|\ge\left|2015-x+x-2017\right|=2\)

        \(\Rightarrow P\ge\left|2016-x\right|+2\)

    Vì \(\left|2016-x\right|\ge0\)\(\Rightarrow\left|2016-x\right|+2\ge2\)

                     \(\Rightarrow P\ge2\)

       Khi đó: \(\left|2016-x\right|=0\)\(\Rightarrow2016-x=0\)\(\Rightarrow x=2016\)

             Vậy \(P_{min}=2\)\(\Leftrightarrow\)\(x=2016\)

22 tháng 5 2021

Buề

5 tháng 5 2017

Ta có:

\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)

\(=\left|x-2016\right|+\left|x-2015\right|+\left|x-2017\right|\)

\(=\left|x-2016\right|+\left(\left|x-2015\right|+\left|x-2017\right|\right)\)

\(*)\) Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-2015\right|+\left|x-2017\right|=\) \(\left|x-2015\right|+\left|2017-x\right|\)

\(\ge\left|x-2015+2017-x\right|=\left|2\right|=2\)

\(*)\) Dễ thấy: \(\left|x-2016\right|\ge0\forall x\)

\(\Leftrightarrow\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\) \(\ge2\)

Đẳng thức xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-2015\ge0\\x-2016=0\\x-2017\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2015\\x=2016\\x\le2017\end{matrix}\right.\) \(\Leftrightarrow x=2016\)

Vậy \(GTNN\) của biểu thức là \(2\Leftrightarrow x=2016\)

23 tháng 1 2020

Áp dụng tính chất \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

T/có: \(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)=\(\left|x-2015\right|+\left|x-2016\right|+\left|2017-x\right|\ge\left|x-2015+2017-x\right|\)=> \(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\ge\left|2\right|=2\)Dấu "=" xảy ra khi

\(\left|x-2016\right|=0\) và (x-2015).(2017-x)\(\ge\)0

=> x=2016 và 2015\(\le\)x\(\le\)2017

=> x=2016.

Vậy GTNN của biểu thức là 2 khi x=2016 ( chữ và nên viết dấu ngoặc nhọn nha đây là máy tính ko có)

Chúc bạn học tốt