K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi x(h) là thời gian tổ 1 hoàn thành công việc khi làm một mình

y(h) là thời gian tổ 2 hoàn thành công việc khi làm một mình

(Điều kiện: x>6; y>6)

Trong 1 giờ, tổ 1 làm được: \(\dfrac{1}{x}\)(công việc)

Trong 1 giờ, tổ 2 làm được: \(\dfrac{1}{y}\)(công việc)

Trong 1 giờ, hai tổ làm được: \(\dfrac{1}{6}\)(công việc)

Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)(1)

Trong 12 giờ, tổ 1 làm được: \(\dfrac{12}{x}\)(công việc)

Trong 2 giờ, tổ 2 làm được: \(\dfrac{2}{y}\)(công việc)

Theo đề, ta có phương trình: \(\dfrac{12}{x}+\dfrac{2}{y}=1\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{12}{x}+\dfrac{2}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x}+\dfrac{12}{y}=2\\\dfrac{12}{x}+\dfrac{2}{y}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{10}{y}=1\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=10\\\dfrac{1}{x}+\dfrac{1}{10}=\dfrac{1}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{15}\\y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=15\\y=10\end{matrix}\right.\)(thỏa ĐK)

Vậy: Tổ 1 cần 15 giờ để hoàn thành công việc khi làm một mình

Tổ 2 cần 10 giờ để hoàn thành công việc khi làm một mình

NV
8 tháng 1 2023

Gọi thời gian làm riêng xong việc của tổ 1 là x>0 (giờ) và tổ 2 là y>0 giờ

Trong 1 giờ hai tổ lần lượt làm được \(\dfrac{1}{x}\) và \(\dfrac{1}{y}\) phần công việc

Do 2 tổ làm chung trong 8 giờ thì hoàn thành nên: \(8\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\)

Hai đội làm việc chung trong 6h và đội 1 làm việc 1 mình thêm 6h thì hoàn thành nên:

\(6\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+6.\dfrac{1}{x}=1\) \(\Leftrightarrow\dfrac{2}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)

Ta được hệ pt: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\\\dfrac{2}{x}+\dfrac{1}{y}=\dfrac{1}{6}\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{24}\\\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=24\\y=12\end{matrix}\right.\)

DD
27 tháng 1 2021

Gọi số giờ nếu làm riêng thì mỗi đội phải làm lần lượt là \(a,b\)(giờ) (\(a,b>0\)).

Mỗi giờ hai đội lần lượt làm được số phần công việc là: \(\frac{1}{a},\frac{1}{b}\)(phần).

Theo bài ta ta có hệ phương trình: 

\(\hept{\begin{cases}6\left(\frac{1}{a}+\frac{1}{b}\right)=1\\2\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{10}{a}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{1}{15}\\\frac{1}{b}=\frac{1}{10}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=15\\b=10\end{cases}}\)(thỏa) 

12 tháng 3 2020

em đéo biết

22 tháng 1 2020

Gọi thời gian đội 1 làm một mình là \(x\left(h\right)\left(x>0\right)\)

\(1h\) đội 1 làm được \(\frac{1}{x}\left(V\right)\)

Gọi thời gian đội 2 làm một mình là \(y\left(h\right)\left(y>0\right)\)

\(1h\) đội 2 làm được \(\frac{1}{y}\left(V\right)\)

Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{4}\)

\(\Leftrightarrow y-x=6\)

\(\Rightarrow y=6+x\)

\(\Rightarrow\frac{1}{x}+\frac{1}{6+x}=\frac{1}{4}\)

\(\Leftrightarrow4\left(6+x\right)+4x=x^2+6x\)

\(\Leftrightarrow24+8x=x^2+6x\)

\(\Leftrightarrow x^2-2x-24=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-4\left(l\right)\end{cases}}\)

Vậy đội 1 làm trong \(6h\); đội 2 làm trong \(12h\)

5:

Gọi số cần tìm là \(\overline{ab}\)

Theo đề, ta có: a+b=14 và 10a+b-10b-a=18

=>a+b=14 và 9a-9b=18

=>a+b=14 và a-b=2

=>2a=16 và a-b=2

=>a=8 và b=6

28 tháng 1 2020

Hình như sai đề rồi. ?????