K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2019
Gì vậy ko hiểu
2 tháng 1 2019

? ko hiểu

13 tháng 7 2018

Bạn có thể ghi ra câu hỏi đc không ?

3 tháng 9 2018

\(A=\sqrt{\sqrt{3}-\sqrt{3-\sqrt{13-4\sqrt{3}}}}\)

\(=\sqrt{\sqrt{3}-\sqrt{3-\sqrt{\left(2\sqrt{3}-1\right)^2}}}\)

\(=\sqrt{\sqrt{3}-\sqrt{3-\left(2\sqrt{3}-1\right)}}\)vì \(2\sqrt{3}>1\Rightarrow2\sqrt{3}-1>0\)

\(=\sqrt{\sqrt{3}-\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{\sqrt{3}-\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{\sqrt{3}-\left(\sqrt{3}-1\right)}\)vì\(\sqrt{3}>1\Rightarrow\sqrt{3}-1>0\)

\(=\sqrt{1}=1\)

12 tháng 12 2019

WHERE?

???? 

8,9,10 ??? là gì

3 tháng 12 2019

\(ĐKXĐ:x\ge2\)

\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x^2+2x-3}+\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(+\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)

\(TH1:\sqrt{x-2}-\sqrt{x+3}=0\Leftrightarrow\sqrt{x-2}=\sqrt{x+3}\)

\(\Leftrightarrow x-2=x+3\left(L\right)\)

\(TH2:\sqrt{x-1}-1=0\Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\)(t/m đk)

Vậy x = 2

3 tháng 12 2019

\(\sqrt{x^2+12}+5=3x+\sqrt{x^2+5}\)

\(\Leftrightarrow\sqrt{x^2+12}-\sqrt{x^2+5}=3x-5\)

Dễ thấy \(VT>0\Rightarrow3x-5>0\Leftrightarrow x>\frac{5}{3}\)

\(pt\Leftrightarrow\left(\sqrt{x^2+5}-3\right)-\left(\sqrt{x^2+12}-4\right)+3x-6=0\)

\(\Leftrightarrow\frac{x^2-4}{\sqrt{x^2+5}+3}-\frac{x^2-4}{\sqrt{x^2+12}+4}+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{x+2}{\sqrt{x^2+5}+3}-\frac{x+2}{\sqrt{x^2+12}+4}+3\right)=0\)

Ta có: \(\frac{x+2}{\sqrt{x^2+5}+3}-\frac{x+2}{\sqrt{x^2+12}+4}\)\(=\left(x+2\right)\left(\frac{1}{\sqrt{x^2+5}+3}-\frac{1}{\sqrt{x^2+12}+4}\right)\)

\(=\left(x+2\right).\frac{\sqrt{x^2+12}-\sqrt{x^2+5}+1}{\left(\sqrt{x^2+5}+3\right)\left(\sqrt{x^2+12}+4\right)}>0\forall x>\frac{5}{3}\)

\(\Rightarrow x-2=0\Leftrightarrow x=2\)

Vậy x = 2