K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

\(=\frac{\left(x+1\right)^2}{\left(x-1\right)^2}:\frac{2\left(x+1\right)^2}{4\left(x-1\right)^2}=\frac{\left(x+1\right)^2}{\left(x-1\right)^2}.\frac{4\left(x-1\right)^2}{2\left(x+1\right)^2}=2\)

\(C=\dfrac{\sqrt{\dfrac{4x^2+4x+1}{x}}}{\sqrt{x}\cdot\left|2x^2-x-1\right|}=\dfrac{\left|2x+1\right|}{\sqrt{x}}\cdot\dfrac{1}{\sqrt{x}\cdot\left|\left(x-1\right)\left(2x+1\right)\right|}\)

\(=\dfrac{1}{x\left|x-1\right|}\)

17 tháng 8 2016

N=2(2x + 5 )^2 - 3(1 + 4x )(1 - 4x)

= 2 (4x^2 + 20x + 25) - 3(1 - 16x^2)

= 8x^2 + 40x + 50 - 3 + 48x^2

= 56x^2 + 40x - 47

(.....????!!!!!!.....)

21 tháng 9 2023

a) \(\sqrt[]{x^2-2x+4}=2x-2\)

\(\Leftrightarrow\sqrt[]{x^2-2x+4}=2\left(x-1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x-1\right)\ge0\\x^2-2x+4=4\left(x-1\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2-2x+4=4x^2-8x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\3x^2-6x=0\end{matrix}\right.\) \(\left(1\right)\)

Giải pt \(3x^2-6x=0\)

\(\Leftrightarrow3x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=2\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow x=2\)

c) \(\sqrt{x^2-3x+2}=\sqrt[]{x-1}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\x^2-3x+2=x-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x^2-4x+3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x=1\cup x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

11 tháng 8 2016

a)

\(M=2+\sqrt{\left(2x\right)^2-2.2x.3+3^2}\)

\(\Rightarrow M=2+\sqrt{\left(2x-3\right)^2}\)

\(\Rightarrow M=2+2x-3\)

\(\Rightarrow M=2x-1\)

b)

(+) x=5/2

=> \(M=2.\frac{5}{2}-1=5-1=4\)

(+) x= - 1/5

=> \(M=2.\frac{\left(-1\right)}{5}-1=-\frac{2}{5}-1=-\frac{7}{5}\)

11 tháng 8 2016

ê căn (2x-3)^2=|2x-3| xét 2 th ra nhé

NV
24 tháng 6 2019

a/ ĐKXĐ: ....

\(\Leftrightarrow2x^2+2x+4+2x-4=5\sqrt{\left(x-2\right)\left(x^2+x+2\right)}\)

\(\Leftrightarrow2\left(x^2+x+2\right)+2\left(x-2\right)=5\sqrt{\left(x-2\right)\left(x^2+x+4\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+2}=a\\\sqrt{x-2}=b\end{matrix}\right.\)

\(\Leftrightarrow2a^2+2b^2=5ab\)

\(\Leftrightarrow\left(a-2b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\2a=b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+2}=2\sqrt{x-2}\\2\sqrt{x^2+x+2}=\sqrt{x-2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+2=4\left(x-2\right)\\4\left(x^2+x+2\right)=x-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+10=0\\4x^2+3x+10=0\end{matrix}\right.\)

Phương trình vô nghiệm

NV
24 tháng 6 2019

b/ ĐKXĐ: ....

\(\Leftrightarrow2x^2-x+1=\sqrt{4x^4+4x^2+1-4x^2}\)

\(\Leftrightarrow2x^2-x+1=\sqrt{\left(2x^2+1\right)^2-\left(2x\right)^2}\)

\(\Leftrightarrow2x^2-x+1=\sqrt{\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)}\)

\(\Leftrightarrow\frac{3}{4}\left(2x^2-2x+1\right)+\frac{1}{4}\left(2x^2+2x+1\right)=\sqrt{\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{2x^2-2x+1}=a\\\sqrt{2x^2+2x+1}=b\end{matrix}\right.\)

\(\Leftrightarrow3a^2+b^2=4ab\Leftrightarrow3a^2-4ab+b^2=0\)

\(\Leftrightarrow\left(a-b\right)\left(3a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\3a=b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x^2-2x+1}=\sqrt{2x^2+2x+1}\\3\sqrt{2x^2-2x+1}=\sqrt{2x^2+2x+1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2-2x+1=2x^2+2x+1\\9\left(2x^2-2x+1\right)=2x^2+2x+1\end{matrix}\right.\)

a:

ĐKXĐ: \(x>=-2\)

\(1+\sqrt{x^2+7x+10}=\sqrt{x+5}+\sqrt{x+2}\)

=>\(1+\sqrt{\left(x+2\right)\left(x+5\right)}=\sqrt{x+5}+\sqrt{x+2}\)

 

Đặt \(\sqrt{x+5}=a;\sqrt{x+2}=b\)(ĐK: a>0 và b>0)

Phương trình sẽ trở thành:

1+ab=a+b

=>ab-a-b+1=0

=>a(b-1)-(b-1)=0

=>(b-1)(a-1)=0

=>\(\left\{{}\begin{matrix}a-1=0\\b-1=0\end{matrix}\right.\Leftrightarrow a=b=1\)

=>\(\left\{{}\begin{matrix}x+5=1\\x+2=1\end{matrix}\right.\)

=>\(x\in\varnothing\)

b: \(\sqrt{4x^2-2x+\dfrac{1}{4}}=4x^3-x^2+8x-2\)

=>\(\sqrt{\left(2x\right)^2-2\cdot2x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2}=4x^3-x^2+8x-2\)

=>\(\sqrt{\left(2x-\dfrac{1}{2}\right)^2}=4x^3-x^2+8x-2\)

=>\(\left|2x-\dfrac{1}{2}\right|=4x^3-x^2+8x-2\)(1)

TH1: x>=1/4

\(\left(1\right)\Leftrightarrow4x^3-x^2+8x-2=2x-\dfrac{1}{2}\)

=>\(4x^3-x^2+6x-\dfrac{3}{2}=0\)

=>\(x^2\left(4x-1\right)+1,5\left(4x-1\right)=0\)

=>\(\left(4x-1\right)\left(x^2+1,5\right)=0\)

=>4x-1=0

=>x=1/4(nhận)

TH2: x<1/4

Phương trình (1) sẽ trở thành:

\(4x^3-x^2+8x-2=-2x+\dfrac{1}{2}\)

=>\(x^2\left(4x-1\right)+2\left(4x-1\right)+0,5\left(4x-1\right)=0\)

=>\(\left(4x-1\right)\cdot\left(x^2+2,5\right)=0\)

=>4x-1=0

=>x=1/4(loại)