Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tim gia tri nho nhat cua bieu thuc : \(\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
Để mình giúp nha
\(A=|x-2013|+|x-2014|+|x-2015|\)
\(=|x-2013|+|2014-x|+2015-x|\)
\(\ge|x-2013+2015-x|+|2014-x|\)
\(\ge2+|2014-x|=2\)
Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}\left(x-2013\right)\left(2015-x\right)\ge0\\|2014-x|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)
Ta có: |x−2013|+|x−2014|+|x−2015|=|x−2013|+|x−2014|+|2015-x|=(|x−2013|+|2015-x|)+|x−2014|
Vì |x−2013|+|2015-x|\(\ge\)|x−2013+2015-x|=2
Dấu"=" xảy ra khi (x-2013)(2015-x)\(\ge0\Rightarrow2013\le x\le2015\)
|x−2014|\(\ge0\)
Dấu"=" xảy ra khi x-2014=0\(\Rightarrow x=2014\)
|x−2013|+|x−2014|+|x−2015|\(\ge\)2
Dấu"=" xảy ra khi\(\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)
Vậy GTNN của |x−2013|+|x−2014|+|x−2015|=2 đạt được khi x=2014
\(B=\left|x+3\right|+\left|2-x\right|\ge\left|x+3+2-x\right|=\left|5\right|=5\)
Dấu "=" xảy ra khi \(x=0\)
Vậy \(B_{min}=5\Leftrightarrow x=0\)
a)A=|\(x+5\)|\(+2-x\)
=> \(x+5=0\)
\(2-x=0\)
=>\(x=-5\)
\(x=2\)
Gía trị nhỏ nhất của A là :
|-5+5|=2-2
=|0|=0
=>=0
Vậy .....................
a/ \(M=x^4-xy^3+x^3y-y^4-1\)
\(\Leftrightarrow M=x^3\left(x+y\right)-y^3\left(x+y\right)-1\)
Mà \(x+y=0\)
\(\Leftrightarrow M=x^3.0-y^3.0-1\)
\(\Leftrightarrow M=-1\)
Vậy ...
\(A=\dfrac{21\left|4x+6\right|+33}{3\left|4x+6\right|+5}\)
Ta thấy:
\(\left\{{}\begin{matrix}21\left|4x+6\right|+33>0\\3\left|4x+6\right|+5>0\end{matrix}\right.\)
Vậy \(A>0\)
\(MAX_A\Rightarrow MIN_{3\left|4x+6\right|+5}\)
\(\left|4x+6\right|\ge0\Rightarrow3\left|4x+6\right|\ge0\Rightarrow3\left|4x+6\right|+5\ge5\)
Dấu "=" xảy ra khi:
\(3\left|4x+6\right|=0\Rightarrow4x=-6\Rightarrow x=-\dfrac{3}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}21\left|4x+6\right|=0\\3\left|4x+6\right|=0\end{matrix}\right.\)
Vậy \(MIN_A=\dfrac{33}{5}\)
Cách làm của Phúc khá phức tạp bạn có thể tham khảo cách của mình nha!
Với mọi giá trị của \(x\in R\) ta có:
\(\left\{{}\begin{matrix}21\left|4x+6\right|+33\ge33\\3\left|4x+6\right|+5\ge5\end{matrix}\right.\)
\(\Rightarrow\dfrac{21\left|4x+6\right|+33}{3\left|4x+6\right|+5}\ge\dfrac{33}{5}\)
Để \(\dfrac{21\left|4x+6\right|+33}{3\left|4x+6\right|+5}=\dfrac{33}{5}\) thì
\(99\left|4x+6\right|+165=105\left|4x+6\right|+165\)
\(\Rightarrow105\left|4x+6\right|-99\left|4x+6\right|=0\)
\(\Rightarrow\left|4x+6\right|=0\Rightarrow x=\dfrac{3}{2}\)
Vậy...........
Chúc bạn học tốt!!!
\(\left(\dfrac{1}{2}\right)^2.\left(\dfrac{2}{3}\right)^2.\left(\dfrac{3}{4}\right)^2.....\left(\dfrac{9}{10}\right)^2\)
\(=\left(\dfrac{1}{1}\right)^2.\left(\dfrac{1}{1}\right)^2.\left(\dfrac{1}{1}\right)^2....\left(\dfrac{1}{10}\right)^2\)
\(=\dfrac{1^2}{10^2}=\dfrac{1}{100}\)