Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left|x+3\right|+\left|2-x\right|\ge\left|x+3+2-x\right|=\left|5\right|=5\)
Dấu "=" xảy ra khi \(x=0\)
Vậy \(B_{min}=5\Leftrightarrow x=0\)
a)A=|\(x+5\)|\(+2-x\)
=> \(x+5=0\)
\(2-x=0\)
=>\(x=-5\)
\(x=2\)
Gía trị nhỏ nhất của A là :
|-5+5|=2-2
=|0|=0
=>=0
Vậy .....................
\(A=\dfrac{21\left|4x+6\right|+33}{3\left|4x+6\right|+5}\)
Ta thấy:
\(\left\{{}\begin{matrix}21\left|4x+6\right|+33>0\\3\left|4x+6\right|+5>0\end{matrix}\right.\)
Vậy \(A>0\)
\(MAX_A\Rightarrow MIN_{3\left|4x+6\right|+5}\)
\(\left|4x+6\right|\ge0\Rightarrow3\left|4x+6\right|\ge0\Rightarrow3\left|4x+6\right|+5\ge5\)
Dấu "=" xảy ra khi:
\(3\left|4x+6\right|=0\Rightarrow4x=-6\Rightarrow x=-\dfrac{3}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}21\left|4x+6\right|=0\\3\left|4x+6\right|=0\end{matrix}\right.\)
Vậy \(MIN_A=\dfrac{33}{5}\)
Cách làm của Phúc khá phức tạp bạn có thể tham khảo cách của mình nha!
Với mọi giá trị của \(x\in R\) ta có:
\(\left\{{}\begin{matrix}21\left|4x+6\right|+33\ge33\\3\left|4x+6\right|+5\ge5\end{matrix}\right.\)
\(\Rightarrow\dfrac{21\left|4x+6\right|+33}{3\left|4x+6\right|+5}\ge\dfrac{33}{5}\)
Để \(\dfrac{21\left|4x+6\right|+33}{3\left|4x+6\right|+5}=\dfrac{33}{5}\) thì
\(99\left|4x+6\right|+165=105\left|4x+6\right|+165\)
\(\Rightarrow105\left|4x+6\right|-99\left|4x+6\right|=0\)
\(\Rightarrow\left|4x+6\right|=0\Rightarrow x=\dfrac{3}{2}\)
Vậy...........
Chúc bạn học tốt!!!
1)
vì | 1 - 2x | \(\ge\)0 \(\Rightarrow\)| 1 - 2x | - 2009 \(\ge\)-2009
\(\Rightarrow\)GTNN của A là -2009 khi | 1 - 2x | = 0 hay x = \(\frac{1}{2}\)
2)
\(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)
\(\Rightarrow x=\left(-3\right).2=-6;y=\left(-3\right).5=-15\)
3)
2225 = ( 23 )75 = 875
3150 = ( 32 )75 = 975
vì 875 < 975 nên 2225 < 3150
Để mình giúp nha
\(A=|x-2013|+|x-2014|+|x-2015|\)
\(=|x-2013|+|2014-x|+2015-x|\)
\(\ge|x-2013+2015-x|+|2014-x|\)
\(\ge2+|2014-x|=2\)
Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}\left(x-2013\right)\left(2015-x\right)\ge0\\|2014-x|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)
Ta có: |x−2013|+|x−2014|+|x−2015|=|x−2013|+|x−2014|+|2015-x|=(|x−2013|+|2015-x|)+|x−2014|
Vì |x−2013|+|2015-x|\(\ge\)|x−2013+2015-x|=2
Dấu"=" xảy ra khi (x-2013)(2015-x)\(\ge0\Rightarrow2013\le x\le2015\)
|x−2014|\(\ge0\)
Dấu"=" xảy ra khi x-2014=0\(\Rightarrow x=2014\)
|x−2013|+|x−2014|+|x−2015|\(\ge\)2
Dấu"=" xảy ra khi\(\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)
Vậy GTNN của |x−2013|+|x−2014|+|x−2015|=2 đạt được khi x=2014