K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2017

Để mình giúp nha

\(A=|x-2013|+|x-2014|+|x-2015|\)

\(=|x-2013|+|2014-x|+2015-x|\)

\(\ge|x-2013+2015-x|+|2014-x|\)

\(\ge2+|2014-x|=2\)

Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}\left(x-2013\right)\left(2015-x\right)\ge0\\|2014-x|=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)

23 tháng 3 2017

Ta có: |x−2013|+|x−2014|+|x−2015|=|x−2013|+|x−2014|+|2015-x|=(|x−2013|+|2015-x|)+|x−2014|

Vì |x−2013|+|2015-x|\(\ge\)|x−2013+2015-x|=2

Dấu"=" xảy ra khi (x-2013)(2015-x)\(\ge0\Rightarrow2013\le x\le2015\)

|x−2014|\(\ge0\)

Dấu"=" xảy ra khi x-2014=0\(\Rightarrow x=2014\)

|x−2013|+|x−2014|+|x−2015|\(\ge\)2

Dấu"=" xảy ra khi\(\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)

Vậy GTNN của |x−2013|+|x−2014|+|x−2015|=2 đạt được khi x=2014

2 tháng 4 2019

X=2013 và Y=2014 thỉ biểu thức đó có giá trị nn

2 tháng 4 2019

thi ban tim ho mk

15 tháng 2 2016

Ta co : x^4 > 0 ; x^2 > 0 => 2015*x^2 > 0

    <=> x^4 + 2015*x^2 + 3*10^2 > 300

Đau "=" xảy ra <=> x^4=0;x^2=0 <=> x=0

Vậy Min A = 300 <=> x = 0

8 tháng 2 2019

\(\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)

\(=\left|x-2014\right|+\left|2016-x\right|+\left|2015-x\right|\)

\(\ge\left|x-2014+2016-x\right|+\left|2015-x\right|\)

\(=2+\left|2015-x\right|\ge2\)

Dấu bằng xảy ra khi: \(\hept{\begin{cases}\left(x-2014\right)\left(2016-x\right)\ge0\\2015-x=0\end{cases}}\Rightarrow x=2015\)

8 tháng 2 2019

Ta có: \(\left|2014-x\right|+\left|2016-x\right|=\left|x-2014\right|+\left|2016-x\right|\ge\left|x-2014+2016-x\right|=2\)

Dấu "=" xảy ra <=> \(\left(2014-x\right)\left(2016-x\right)\ge0\)

                      <=> \(2014\le x\le2016\) (1)

Mặt khác \(\left|2015-x\right|\ge0\). Dấu "=" xảy ra <=> 2015-x = 0 <=> x = 2015 (2)

Ta thấy điều kiện (2) và (1) thỏa nhau

Nên kết hợp cả hai ta suy ra: GTNN của |2014-x|+|2015-x|+|2016-x| bằng 2 khi x = 2015

2 tháng 2 2017

a) 

\(\hept{\begin{cases}\left(x^2-9x\right)^2\ge0\\!y-2!\ge0\end{cases}\Rightarrow GTNN=10}\) đẳng thức đạt được khi y=2 và \(\orbr{\begin{cases}x=0\\x=9\end{cases}}\)

b) 

cách 1: ghép tạo số hạng (x-2015)

E=x^9(x-2015)+x^8(x-2015)+....+x(x-2015)+x-1=2014 tại x=2015

hoặc

x^10-1=(x-1)(x^9+x^8+..+1) cái này cơ bản

-2014x^9-2014x-2014+2014 thêm 2014 bớt 2014

(x^9+x^8+..+1)(x-1-2014)+2014=(x-2015)(x^9+..+1)+2014=2014

10 tháng 5 2016

viết ại đề đi bn ," | " chứ?

10 tháng 5 2016

em nghĩ là =0

10 tháng 8 2017

\(A=31-\sqrt{2x+7}\)

Ta có: điều kiện để có căn:\(\sqrt{2x+7}\) thì :\(2x+7\ge0\Rightarrow2x\ge-7\Rightarrow x\ge-3,5\)

Với mọi \(x\ge-3,5\) ta có:

\(\sqrt{2x+7}\ge0\)

\(\Rightarrow A=31-\sqrt{2x+7}\le31\)

Dấu "=" xảy ra khi:

\(\sqrt{2x+7}=0\Rightarrow2x=-7\Rightarrow x=-3,5\)

Vậy \(MAX_A=31\) khi \(x=-3,5\)

\(B=-9+\sqrt{7+x}\)

Ta có: điều kiện để có căn \(\sqrt{7+x}\) thì:

\(x\ge-7\)

Với mọi \(x\ge-7\) ta có:

\(\sqrt{7+x}\ge0\)

\(\Rightarrow-9+\sqrt{7+x}\ge-9\)
Dấu "=" xảy ra khi:

\(\sqrt{7+x}=0\Rightarrow x=-7\)

\(\Rightarrow MIN_B=-9\) khi \(x=-7\)

10 tháng 8 2017

a, Sửa đề: Tìm GTLN của biểu thức

\(\sqrt{2x+7}\ge0\) \(\Rightarrow-\sqrt{2x+7}\le0\)

\(\Rightarrow31-\sqrt{2x+7}\le31\)

Dấu ''='' xảy ra khi :

\(-\sqrt{2x+7}=0\Rightarrow2x+7=0\Rightarrow x=-3,5\)

Vậy \(A_{Max}=31\) khi và chỉ khi x = -3,5

b, Tìm GTNN của B

Giải: \(B=-9+\sqrt{7+x}=\sqrt{7+x}-9\)

\(\sqrt{7+x}\ge0\Rightarrow\sqrt{7+x}-9\ge-9\)

Dấu ''='' xảy ra khi \(\sqrt{7+x}=0\Rightarrow x=-7\)

Vậy \(B_{Min}=-9\) khi x = -7

p/s: Lần sau gửi đề cẩn thận hơn ||^^