Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tim gia tri nho nhat cua bieu thuc : \(\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|\)
Để mình giúp nha
\(A=|x-2013|+|x-2014|+|x-2015|\)
\(=|x-2013|+|2014-x|+2015-x|\)
\(\ge|x-2013+2015-x|+|2014-x|\)
\(\ge2+|2014-x|=2\)
Dấu '' = '' xảy ra khi \(\left\{{}\begin{matrix}\left(x-2013\right)\left(2015-x\right)\ge0\\|2014-x|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)
Ta có: |x−2013|+|x−2014|+|x−2015|=|x−2013|+|x−2014|+|2015-x|=(|x−2013|+|2015-x|)+|x−2014|
Vì |x−2013|+|2015-x|\(\ge\)|x−2013+2015-x|=2
Dấu"=" xảy ra khi (x-2013)(2015-x)\(\ge0\Rightarrow2013\le x\le2015\)
|x−2014|\(\ge0\)
Dấu"=" xảy ra khi x-2014=0\(\Rightarrow x=2014\)
|x−2013|+|x−2014|+|x−2015|\(\ge\)2
Dấu"=" xảy ra khi\(\left\{{}\begin{matrix}2013\le x\le2015\\x=2014\end{matrix}\right.\Rightarrow x=2014\)
Vậy GTNN của |x−2013|+|x−2014|+|x−2015|=2 đạt được khi x=2014
Ta co : x^4 > 0 ; x^2 > 0 => 2015*x^2 > 0
<=> x^4 + 2015*x^2 + 3*10^2 > 300
Đau "=" xảy ra <=> x^4=0;x^2=0 <=> x=0
Vậy Min A = 300 <=> x = 0
\(\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\)
\(=\left|x-2014\right|+\left|2016-x\right|+\left|2015-x\right|\)
\(\ge\left|x-2014+2016-x\right|+\left|2015-x\right|\)
\(=2+\left|2015-x\right|\ge2\)
Dấu bằng xảy ra khi: \(\hept{\begin{cases}\left(x-2014\right)\left(2016-x\right)\ge0\\2015-x=0\end{cases}}\Rightarrow x=2015\)
Ta có: \(\left|2014-x\right|+\left|2016-x\right|=\left|x-2014\right|+\left|2016-x\right|\ge\left|x-2014+2016-x\right|=2\)
Dấu "=" xảy ra <=> \(\left(2014-x\right)\left(2016-x\right)\ge0\)
<=> \(2014\le x\le2016\) (1)
Mặt khác \(\left|2015-x\right|\ge0\). Dấu "=" xảy ra <=> 2015-x = 0 <=> x = 2015 (2)
Ta thấy điều kiện (2) và (1) thỏa nhau
Nên kết hợp cả hai ta suy ra: GTNN của |2014-x|+|2015-x|+|2016-x| bằng 2 khi x = 2015
a)
\(\hept{\begin{cases}\left(x^2-9x\right)^2\ge0\\!y-2!\ge0\end{cases}\Rightarrow GTNN=10}\) đẳng thức đạt được khi y=2 và \(\orbr{\begin{cases}x=0\\x=9\end{cases}}\)
b)
cách 1: ghép tạo số hạng (x-2015)
E=x^9(x-2015)+x^8(x-2015)+....+x(x-2015)+x-1=2014 tại x=2015
hoặc
x^10-1=(x-1)(x^9+x^8+..+1) cái này cơ bản
-2014x^9-2014x-2014+2014 thêm 2014 bớt 2014
(x^9+x^8+..+1)(x-1-2014)+2014=(x-2015)(x^9+..+1)+2014=2014
\(A=31-\sqrt{2x+7}\)
Ta có: điều kiện để có căn:\(\sqrt{2x+7}\) thì :\(2x+7\ge0\Rightarrow2x\ge-7\Rightarrow x\ge-3,5\)
Với mọi \(x\ge-3,5\) ta có:
\(\sqrt{2x+7}\ge0\)
\(\Rightarrow A=31-\sqrt{2x+7}\le31\)
Dấu "=" xảy ra khi:
\(\sqrt{2x+7}=0\Rightarrow2x=-7\Rightarrow x=-3,5\)
Vậy \(MAX_A=31\) khi \(x=-3,5\)
\(B=-9+\sqrt{7+x}\)
Ta có: điều kiện để có căn \(\sqrt{7+x}\) thì:
\(x\ge-7\)
Với mọi \(x\ge-7\) ta có:
\(\sqrt{7+x}\ge0\)
\(\Rightarrow-9+\sqrt{7+x}\ge-9\)
Dấu "=" xảy ra khi:
\(\sqrt{7+x}=0\Rightarrow x=-7\)
\(\Rightarrow MIN_B=-9\) khi \(x=-7\)
a, Sửa đề: Tìm GTLN của biểu thức
Vì \(\sqrt{2x+7}\ge0\) \(\Rightarrow-\sqrt{2x+7}\le0\)
\(\Rightarrow31-\sqrt{2x+7}\le31\)
Dấu ''='' xảy ra khi :
\(-\sqrt{2x+7}=0\Rightarrow2x+7=0\Rightarrow x=-3,5\)
Vậy \(A_{Max}=31\) khi và chỉ khi x = -3,5
b, Tìm GTNN của B
Giải: \(B=-9+\sqrt{7+x}=\sqrt{7+x}-9\)
Vì \(\sqrt{7+x}\ge0\Rightarrow\sqrt{7+x}-9\ge-9\)
Dấu ''='' xảy ra khi \(\sqrt{7+x}=0\Rightarrow x=-7\)
Vậy \(B_{Min}=-9\) khi x = -7
p/s: Lần sau gửi đề cẩn thận hơn ||^^