Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2n-1+5n-2=\frac{7}{32}\)
\(\Rightarrow\left(2n+5n\right)-\left(1+2\right)=\frac{7}{32}\)
\(\Rightarrow7n-3=\frac{7}{32}\)
\(\Rightarrow7n=\frac{53}{96}\)
\(\Rightarrow n=\frac{53}{672}\)
Mà \(n=\frac{53}{672}\notin Z\)
\(\Rightarrow x\) không có giá trị thỏa mãn
Vậy \(x\) không có giá trị thỏa mãn
\(\frac{2n-3}{n+1}=\frac{n+1+n+1-5}{n+1}=\frac{-5}{n+1}\)
=\(\Rightarrow n+1\in\text{Ư}\left(-5\right)=\left\{1;5;-1;-5\right\}\)
\(\Leftrightarrow n+1=1\Rightarrow n=0\)
\(\Leftrightarrow n+1=5\Rightarrow n=4\)
\(\Leftrightarrow n+1=-1\Rightarrow n=-2\)
\(\Leftrightarrow n+1=-5\Rightarrow n=-6\)
Vậy: \(n\in\left\{0;4;-2;-6\right\}\)
a) \(\Rightarrow2\left(n+3\right)-38⋮\left(n+3\right)\)
Do \(n\in N\)
\(\Rightarrow\left(n+3\right)\inƯ\left(38\right)=\left\{19;38\right\}\)
\(\Rightarrow n\in\left\{16;35\right\}\)
b) \(\Rightarrow5\left(n+5\right)-74⋮\left(n+5\right)\)
Do \(n\in N\)
\(\Rightarrow\left(n+5\right)\inƯ\left(74\right)=\left\{37;74\right\}\)
\(\Rightarrow N\in\left\{32;69\right\}\)
Mình sẽ tách ra làm từng ý, bạn nhớ k cho mình nhé!
a) Gọi d là ƯCLN ( 2n + 3; 4n + 1 )
Ta có: 2n + 3 chia hết cho d
=> 2 ( 2n + 3 ) chia hết cho d
=> 4n + 6 chia hết cho d
Mà: 4n + 1 chia hết cho d
=> ( 4n + 6 ) - ( 4n + 1 ) chia hết cho d
=> 5 chia hết cho d
=> d thuộc Ư ( 5 )
Giả sử phân số không tối giản:
=> 2n + 3 chia hết cho 5
=> 2n + 3 + 5 chia hết cho 5
=> 2n + 8 chia hết cho 5
=> 2 ( n + 4 ) chia hết cho 5
Vì ƯCLN ( 2; 5 ) = 1
=> n + 4 chia hết cho 5
=> n + 4 = 5k ( k thuộc N* )
=> n = 5k - 4
Vậy với n khác 5k - 4 ( k thuộc N* ) thì phân số bài cho sẽ tối giản.
b) Gọi d = ƯCLN ( 3n + 2; 7n + 1 )
Ta có: 3n + 2 chia hết cho d => 7 ( 3n + 2 ) chia hết cho d => 21n + 14 chia hết cho d ( 1 )
7n + 1 chia hết cho d => 3 ( 7n + 1 ) chia hết cho d => 21n + 3 chia hết cho d ( 2 )
Có: ( 1 ) chia hết cho d; ( 2 ) chia hết cho d
=> ( 1 ) - ( 2 ) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư ( 11 )
Giả sử phân số không tối giản:
=> 7n + 1 chia hết cho 11
=> 7n + 1+ 55 chia hết cho 11
=> 7n + 56 chia hết cho 11
=> 7 ( n + 8 ) chia hết cho 11
Vì ƯCLN ( 7; 11 ) = 1
=> n + 8 chia hết cho 11
=> n + 8 = 11k ( k thuộc N* )
=> n = 11k - 8
Vậy với n khác 11k - 8 ( k thuộc N* ) thì phân số bài cho sẽ tối giản.
Mình làm cho bạn 2 câu, câu còn lại tương tự, bạn tự làm ha! ^v^
\(2n-1+5n-2=\frac{7}{32}\)
\(7n-3=\frac{7}{32}\)
\(7n=\frac{7}{32}+3\)
\(7n=\frac{103}{32}\)
\(n=\frac{103}{32}:7\)
\(n=\frac{103}{224}\)