K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2023

`Leftrightarrow` `x=0` hoặc `x=3/4`

Giá trị tuyệt đối của mỗi ẩn thôi thì bỏ dấu giải bình thường, còn là phép tính thì chia thêm dấu âm và một cái giữ nguyên rồi giải bình thường thôi: )

28 tháng 11 2023

cho tới xin cách làm đc hok ạ tớ cảm ơn

7 tháng 5 2016

ta rút gọn đa thức 

F(x)= 2x^3 + 3x^2 - 2x + 3

G(x)= 3x^2 - 7x + 2

H(x)= (2x^3 + 3x^2 - 2x + 3) - (3x^2 - 7x + 2)

     =  2x^3 + 3x^2 - 2x + 3 - 3x^2 + 7x - 2

     = 2x^3 + 5x + 1

P(x)=  (2x^3 + 3x^2 - 2x + 3) + (3x^2 - 7x + 2)

     = 2x^3 + 6x^2 - 9x + 5

4 tháng 5 2016

Bạn tự làm được, bài cực kì cơ bản. Mình hd thôi.

Bạn lấy 2 đa thức trừ cho nhau, nhớ để ngoặc để phá dấu không bị nhầm.

Câu b thì nghiệm của đa thức chính là tìm x sao cho H(x)=0

6 tháng 6 2019

\(2019x^2+x+2020=0\)

\(\Leftrightarrow2019\left(x^2+\frac{x}{2019}+\frac{2020}{2019}\right)=0\)

\(\Leftrightarrow x^2+2\cdot x\cdot\frac{1}{4038}+\frac{1}{4038^2}+\frac{2020}{2019}-\frac{1}{4038^2}=0\)

\(\Leftrightarrow\left(x+\frac{1}{4038}\right)^2+\frac{2020\cdot8076-1}{4038^2}=0\)

\(\Leftrightarrow\left(x+\frac{1}{4038}\right)^2=-\frac{2020\cdot8076-1}{4038^2}\)(1)

Vì \(2020\cdot8076-1>0\Rightarrow\frac{2020\cdot8076-1}{4038^2}>0\)

\(\Rightarrow-\frac{2020\cdot8076-1}{4038^2}< 0\)(2)

Từ (1) và (2) suy ra đa thức vô nghiệm

\(\)

6 tháng 6 2019

Đa thức

trên vô nghiệm

hok tốt

nha

x^4-4x^3+6=0

=>\(x\simeq1,3;x\simeq3,9\)

27 tháng 8 2021

`a)5/9:(1/11-5/22)+5/9:(1/15-2/3)`

`=5/9:(2/22-5/22)+5/9:(1/15-10/15)`

`=5/9:(-3)/22+5/9:(-9)/15`

`=5/9*(-22)/3+5/9*(-5)/3`

`=5/9*(-22/3+(-5)/3)`

`=5/9*(-9)=-5`

27 tháng 8 2021

Thanks bn nhìu nha >.<yeu

24 tháng 11 2017

a​,  f(1/3) = -(1/3)2​ + 4 = 35/9

     f(-1) = -(-1)2 + 4 = 3

     f(-2/50) = -(-2/50)2​ + 4 = 3,9984

b, ta có:  f(x) = -x2​ + 4 = -5

               -x2 = -1

        =>  x = 1

16 tháng 4 2021

Ta có: \(G\left(x\right)=0\Leftrightarrow3x^2-4x+1=0\)

\(\Leftrightarrow3x^2-3x-x+1=3x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\3x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy x=1 và \(x=\dfrac{1}{3}\) là nghiệm của đa thức G(x).

16 tháng 4 2021

đặt g(x)=0

hay 3x\(^2\) - 4x + 1=0

=>3x\(^2\) - x-3x + 1=0

=> x(3x-1) - (3x -1)=0

=> (3x - 1)(x-1)=0

=>\(\left[{}\begin{matrix}3x-1=0\\x-1=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}\dfrac{1}{3}\\1\end{matrix}\right.\)

vậy x=1 hoặc x=\(\dfrac{1}{3}\)là nghiệm của g(x)

 

27 tháng 12 2021

bn vào olm.vn ik trong đấy có câu trả lời đấy!

gợi ý cho bn r đó nha ! 

nhớ like cho mik đấy!

 

27 tháng 12 2021

Ta có \(m=\dfrac{3^p-1}{2}\cdot\dfrac{3^p+1}{4}=ab\) với \(\left(a;b\right)=\left(\dfrac{3^p-1}{2};\dfrac{3^p+1}{4}\right)\)

Vì \(a,b\) là các số nguyên lớn hơn 1 nên m là hợp số

Mà \(m=9^{p-1}+9^{p-2}+...+9+1\) và p lẻ nên \(m\equiv1\left(mod3\right)\)

Theo định lí Fermat, ta có \(\left(9^p-9\right)⋮p\)

Mà \(\left(p,8\right)=1\Rightarrow\left(9^p-9\right)⋮8p\Rightarrow m-1⋮\dfrac{9^p-9}{8}⋮p\)

Vì \(\left(m-1\right)⋮2\Rightarrow\left(m-1\right)⋮2p\Rightarrow\left(3^{m-1}-1\right)⋮\left(3^{2p}-1\right)⋮\dfrac{9^p-1}{8}=m\left(đpcm\right)\)