Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(7y-x\right)^{2020}\ge0,\left|5-11x\right|^{2021}\ge0\)
Mà \(\left(7y-x\right)^{2020}+\left|5-11x\right|^{2021}=0\\ \Rightarrow\left\{{}\begin{matrix}\left(7y-x\right)^{2020}=0\\\left|5-11x\right|^{2021}=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}7y-x=0\\5-11x=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}7y-\dfrac{5}{11}=0\\x=\dfrac{5}{11}\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{5}{77}\\x=\dfrac{5}{11}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(7y-x\right)^{2020}=0\\\left|5-11x\right|^{2021}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y-x=0\\5-11x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y=x\\x=\dfrac{5}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{11}\\y=\dfrac{5}{77}\end{matrix}\right.\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}x-7y=0\\11x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{11}\\y=\dfrac{x}{7}=\dfrac{5}{77}\end{matrix}\right.\)
Lời giải:
a. Bạn cần viết đề bằng công thức toán để đề được rõ ràng hơn.
b. Ta có:
$(7y-x)^{2020}\geq 0$ với mọi $x,y$
$|5-11x|^{2021}\geq 0$ với mọi $x,y$
Do đó để tổng của chúng bằng $0$ thì:
$(7y-x)^{2020}=|5-11x|^{2021}=0$
$\Leftrightarrow x=\frac{5}{11}; y=\frac{5}{77}$
=>|2x+2020|=2
\(\Leftrightarrow\left[{}\begin{matrix}2x=-2022\\2x=-2018\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1011\\x=-1009\end{matrix}\right.\)
????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
Để olm.vn giúp em nhá:
(\(x-5\))2002 + (2\(x\) + 1)2000 = 0
vì (\(x\) - )2022 ≥ 0 ∀ \(x\)
(2\(x\) + 1)2000 \(\ge\) 0 ∀ \(x\)
⇒ (\(x\) - 5)2002 + (2\(x\) + 1)2000 = 0
⇔ \(\left\{{}\begin{matrix}\left(x-5\right)^{2002}=0\\\left(2x+1\right)^{2000}=0\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}x-5=0\\2x+1=0\end{matrix}\right.\)
\(\Rightarrow\) \(\left\{{}\begin{matrix}x=5\\2x=-1\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=5\\x=-\dfrac{1}{2}\end{matrix}\right.\)
vì - \(\dfrac{1}{2}\) \(\ne\) 5 vậy \(x\in\) \(\varnothing\)