Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)1/7xx2/7+1/7xx5/7+6/7`
`=1/7xx(2/7+5/7)+6/7`
`=1/7xx1+6/7`
`=1/7+6/7=1`
`b)6/11xx4/9+6/11xx7/9-6/11xx2/9`
`=6/11xx(4/9+7/9-2/9)`
`=6/11xx9/9`
`=6/11`
Sorry nãy ghi thiếu.
`c)4/25xx5/8xx25/4xx24`
`=(4xx5xx25xx24)/(25xx8xx4)`
`=(4xx5xx24)/(4xx8)`
`=(5xx24)/8`
`=5xx3=15`
\(a,5x\dfrac{7}{3}=\dfrac{5}{1}x\dfrac{7}{3}=\dfrac{35}{3};b,\dfrac{13}{4}:7=\dfrac{13}{4} :\dfrac{7}{1}=\dfrac{13}{4}x\dfrac{1}{7}=\dfrac{13}{28}\)
1. Tính
\(a,5\times\dfrac{7}{3}=\dfrac{35}{3}\)
\(b,\dfrac{13}{4}:7=\dfrac{13}{4}\times\dfrac{1}{7}=\dfrac{13}{28}\)
2. Tính
\(a,\dfrac{3}{7}+\dfrac{2}{5}+\dfrac{3}{4}\)
\(=\dfrac{15}{35}+\dfrac{14}{35}+\dfrac{3}{4}\)
\(=\dfrac{29}{35}+\dfrac{3}{4}\)
\(=\dfrac{116}{140}+\dfrac{105}{140}\)
\(=\dfrac{221}{140}\)
\(b,\dfrac{9}{7}-\dfrac{5}{11}\times\dfrac{11}{7}\)
\(=\dfrac{9}{7}-\dfrac{55}{77}\)
\(=\dfrac{99}{77}-\dfrac{55}{77}\)
\(=\dfrac{44}{77}=\dfrac{4}{7}\)
\(c,\dfrac{3}{5}\times\dfrac{5}{7}+\dfrac{4}{7}\)
\(=\dfrac{3}{5}\times\left(\dfrac{5}{7}+\dfrac{4}{7}\right)\)
\(=\dfrac{3}{5}\times\dfrac{9}{7}\)
\(=\dfrac{27}{35}\)
\(d,\dfrac{7}{9}\times\dfrac{2}{5}:\dfrac{3}{11}\)
\(=\dfrac{14}{45}:\dfrac{3}{11}\)
\(=\dfrac{14}{45}\times\dfrac{11}{3}\)
\(=\dfrac{154}{135}\)
\(e,\dfrac{9}{7}+\dfrac{2}{3}-\dfrac{1}{4}\)
\(=\dfrac{27}{21}+\dfrac{14}{21}-\dfrac{1}{4}\)
\(=\dfrac{41}{21}-\dfrac{1}{4}\)
\(=\dfrac{164}{84}-\dfrac{21}{84}\)
\(=\dfrac{143}{84}\)
\(g,\dfrac{4}{9}:\dfrac{3}{5}\times\dfrac{2}{11}\)
\(=\dfrac{4}{9}\times\dfrac{5}{3}\times\dfrac{2}{11}\)
\(=\dfrac{20}{27}\times\dfrac{2}{11}\)
\(=\dfrac{40}{297}\)
\(h,\dfrac{7}{2}-\dfrac{3}{10}:\dfrac{2}{5}\)
\(=\left(\dfrac{7}{2}-\dfrac{3}{10}\right):\dfrac{2}{5}\)
\(=\left(\dfrac{35}{10}-\dfrac{3}{10}\right):\dfrac{2}{5}\)
\(=\dfrac{32}{10}:\dfrac{2}{5}\)
\(=\dfrac{16}{5}\times\dfrac{5}{2}\)
\(=\dfrac{80}{10}=8\)
Lời giải:
Gọi tích trên là $A$. Ta có:
$A=\frac{1}{2}\times \frac{2}{3}\times \frac{3}{4}\times \frac{4}{5}\times \frac{5}{6}$
$=\frac{1\times 2\times 3\times 4\times 5}{2\times 3\times 4\times 5\times 6}=\frac{1}{6}$
\(\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{38\times39}\)
\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...\dfrac{1}{38}-\dfrac{1}{39}\)
\(=\dfrac{1}{3}-\dfrac{1}{39}\)
\(=\dfrac{13}{39}-\dfrac{1}{39}\)
\(=\dfrac{12}{39}=\dfrac{4}{13}\)
`1/(3xx4)+1/(4xx5)+1/(5xx6)+...+1/(38xx39)`
`=1/3-1/4+1/4-1/5+1/5-1/6+...+1/38-1/39`
`=1/3-1/39`
`=4/13`
`5/7xx5/11+5/7xx2/11-5/7xx14/11`
`=5/7xx(5/11+2/11-14/11)`
`=5/7xx(-7/11)`
`=-5/11`
`a)4/5+5 1/2 xx (4,5-2)+7/10`
`=4/5+11/2*2,5+7/10`
`=0,8+2,2+0,7`
`=3+0,7=3,7`
`b)125%xx 17/4:(1 5/16-0,5)+2008`
`=1,25xx4,25:13/16+2008`
`=85/13+2008`
`=2014 7/13`
`c)5/11+(16/11+1)`
`=5/11+1+5/11+1`
`=2+10/11=32/11`
`d)3/17+11/4+5/8+14/17+3/8`
`=3/17+14/17+5/8+3/8+11/4`
`=1+1+11/4`
`=19/4`
a)
\(\dfrac{4}{5}+5\dfrac{1}{2}x\left(4,5-2\right)=\dfrac{7}{10}\)
<=> \(\dfrac{11}{2}x\times2,5=\dfrac{7}{10}-\dfrac{4}{5}=\dfrac{-1}{10}\)
<=> \(\dfrac{55}{4}x=\dfrac{-1}{10}< =>x=\dfrac{-2}{275}\)
b) \(125\%\times\dfrac{17}{4}:\left(1\dfrac{5}{16}-0,5\right)+2008\)
= \(\dfrac{85}{16}:\left(\dfrac{21}{16}-\dfrac{1}{2}\right)+2008=\dfrac{85}{16}:\dfrac{13}{16}+2008=\dfrac{26189}{13}\)
c) \(\dfrac{5}{11}+\left(\dfrac{16}{11}+1\right)\)
= \(\dfrac{21}{11}+1=\dfrac{32}{11}\)
d) \(\left(\dfrac{3}{17}+\dfrac{14}{17}\right)+\left(\dfrac{5}{8}+\dfrac{3}{8}\right)+\dfrac{11}{4}\)
= 1 + 1 + \(\dfrac{11}{4}\) = \(\dfrac{19}{4}\)
Bài 1: Ta có: \(4\dfrac{3}{5}+\dfrac{7}{10}< X< \dfrac{20}{3}\)
\(\dfrac{23}{5}+\dfrac{7}{10}< X< \dfrac{20}{3}\)
\(\dfrac{138}{30}< X< \dfrac{200}{3}\)
\(\Rightarrow X\in\left\{\dfrac{160}{30};\dfrac{161}{30};\dfrac{162}{30};...;\dfrac{198}{30};\dfrac{199}{30}\right\}\)
Bài 2: \(X-2019\dfrac{2}{13}=3\dfrac{7}{26}+4\dfrac{7}{52}\)
\(\Rightarrow X-\dfrac{26249}{13}=\dfrac{85}{26}+\dfrac{215}{52}\)
\(\Rightarrow X-\dfrac{26249}{13}=\dfrac{385}{52}\)
\(\Rightarrow X=\dfrac{105381}{52}\)
đặt
\(A=\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+..+\dfrac{1}{92\cdot95}+\dfrac{1}{95\cdot97}\)
\(3A=\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{92\cdot95}+\dfrac{3}{95\cdot97}\)
\(3A=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{97}\)
\(3A=\dfrac{1}{2}-\dfrac{1}{97}\\ 3A=\dfrac{95}{194}\\ A=\dfrac{95}{582}\)