Mọi người chỉ cho mình những cách chứng minh 3 điểm thẳng hàng trong 1 tam giác nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ba điểm thẳng hàng khi chúng cùng nằm trên 1 đường thẳng
góc có số đo bằng 90 độ thì gọi là góc vuông
tia phân giác của góc là tia nằm giữa 2 cạnh của góc và tạo với 2 cạnh ấy hai góc bằng nhau
còn chứng minh tam giác vuông thì mình ko biết .
k cho mik nhak
VD như: Tam giac ABC vuông tại A , đường phân giác BD . Kẻ AE vuông góc vs BD , AE cắt BC ở K
a) C/M tam giác ABK cân tại B
b) C/M DK vuông góc vs BC
c) Kẻ AH vuông góc BC .C/M AK là tia phân giác của góc HAC
d) Gọi I là giao điểm của AH và BD . C/M IK // AC.
BẠN LÀM CHO MK BÀI NÀY ĐC KO
Khi 3 điểm nào đó nằm trên cùng 1 đường thảng ta nói chúng thảng hàng .
vì nằm trên đường thẳng đó
vì nó thuộc đường thẳng đó
\(a)\)
\(\text{Ta có}:\)
\(\Delta ABC\)\(\text{vuông tại}\)\(A\)
\(\rightarrow BC^2=AB^2+AC^2\)
\(\rightarrow AC^2=BC^2-AB^2\)
\(\rightarrow AC^2=15^2-9^2\)
\(\rightarrow AC^2=144\)
\(\rightarrow AC=12\)
\(\rightarrow AB< AC< BC\)
\(\rightarrow\widehat{C}< \widehat{B}< \widehat{A}\)
\(\text{Ta có:}\)
\(AB\perp AC\rightarrow\widehat{BAC}=\widehat{EAC}\)
\(\rightarrow AB=AE\rightarrow A\)\(\text{là trung điểm}\)\(BE\)
\(b)\)
\(\text{Theo phần a), ta có:}\)\(AB=AE\rightarrow A\text{ }\)\(\text{là trung điểm}\)\(BE\)
\(\rightarrow CA\)\(\text{là trung tuyến}\)\(\Delta CBE\)
\(\text{Mà}\)\(BH\)\(\text{là trung tuyến}\)\(\Delta BCE\)\(,\)\(BH\text{∩}\text{ }CA=M\)
\(\rightarrow M\text{ }\)\(\text{là trọng tâm}\)\(\Delta BCE\)
\(\rightarrow CM=\frac{2}{3}CA\)
\(\rightarrow CM=8\)
\(c)\)
\(\text{Theo phần a)}\)\(\rightarrow\widehat{ECA}=\widehat{ACB}\)
\(\rightarrow\widehat{CEA}=\widehat{CBA}\)
\(\text{Do}\)\(AK//CE\rightarrow\widehat{KAB}=\widehat{AEC}=\widehat{CBA}=\widehat{KBA}\rightarrow KB=KA\)
\(\widehat{KAC}=\widehat{ECA}=\widehat{ACB}=\widehat{ACK}\rightarrow KA=KC\)
\(\rightarrow KB=KC\rightarrow K\)\(\text{là trung điểm}\)\(BC\)
\(\text{Mà}\)\(M\)\(\text{là trọng tâm}\)\(\Delta CBE\rightarrow E,MK\)\(\text{thẳng hàng}\)