K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2022

\(\Rightarrow3xy=12-11y\Leftrightarrow3xy+11y=12\)

\(\Leftrightarrow y\left(3x+11\right)=12\Rightarrow y;3x+11\inƯ\left(12\right)=12\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm\right\}\)

-> bạn tự lập bảng 

AH
Akai Haruma
Giáo viên
12 tháng 2 2023

Lời giải:
$\frac{2}{x}+\frac{y}{3}=\frac{1}{6}$

$\frac{6+xy}{3x}=\frac{1}{6}$

$\frac{2(6+xy)}{6x}=\frac{x}{6x}$

$\Rightarrow 2(6+xy)=x$

$\Rightarrow 12+2xy-x=0$

$12=x-2xy$

$12=x(1-2y)$

$\Rightarrow 1-2y$ là ước của $12$

Mà $1-2y$ lẻ nên $1-2y$ là ước lẻ của $12$

$\Rightarrow 1-2y\in\left\{\pm 1; \pm 3\right\}$

$\Rightarrow y\in\left\{0; 1; 2; -1\right\}$

$\Rightarrow x\in\left\{12; -12; -4; 4\right\}$ (tương ứng)

18 tháng 8 2023

\(2x^2+\dfrac{1}{x^2}+\dfrac{y^2}{4}=4\)

\(\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}=4\left(1\right)\)

Theo Bất đẳng thức Cauchy cho các cặp số \(\left(x^2;\dfrac{1}{x^2}\right);\left(x^2;\dfrac{y^2}{4}\right)\)

\(\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge2.\dfrac{1}{2}xy\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+\dfrac{1}{x^2}\ge2\\x^2+\dfrac{y^2}{4}\ge xy\end{matrix}\right.\)

Từ \(\left(1\right)\Leftrightarrow x^2+\dfrac{1}{x^2}+x^2+\dfrac{y^2}{4}\ge2+xy\)

\(\Leftrightarrow4\ge2+xy\)

\(\Leftrightarrow xy\le2\left(x;y\inℤ\right)\)

\(\Leftrightarrow Max\left(xy\right)=2\)

Dấu "=" xảy ra khi

\(xy\in\left\{-1;1;-2;2\right\}\)

\(\Leftrightarrow\left(x;y\right)\in\left\{\left(-1;-2\right);\left(1;2\right);\left(-2;-1\right);\left(2;1\right)\right\}\) thỏa mãn đề bài

17 tháng 9 2023

hình như dấu "=" xảy ra khi x^2 = 1/x^2 với x^2 = y^2/4 mà bạn nhỉ

28 tháng 12 2023

1/2 - 1/y = x/3

3y - 6 = 2xy

3y - 2xy = 6

y(3 - 2x) = 6

Do x là số nguyên nên 2x là số chẵn

3 - 2x là số lẻ

* TH1: 3 - 2x = -3 và y = -2

+) 3 - 2x = -3

2x = 3 + 3

2x = 6

x = 6 : 2

x = 3

* TH2: 3 - 2x = -1 và y = -6

+) 3 - 2x = -1

2x = 3 + 1

2x = 4

x = 4 : 2

x = 2

* TH3: 3 - 2x = 1 và y = 6

+) 3 - 2x = 1

2x = 3 - 1

2x = 2

x = 2 : 2

x = 1

* TH4: 3 - 2x = 3 và y = 2

+) 3 - 2x = 3

2x = 3 - 3

2x = 0

x = 0

Vậy ta tìm được các cặp giá trị (x; y) thỏa mãn:

(3; -2); (2; -6); (1; 6); (0; 2)

28 tháng 12 2023

\(\dfrac{1}{2}\) - \(\dfrac{1}{y}\) = \(\dfrac{x}{3}\) (đk y ≠ 0)

\(\dfrac{x}{3}\) + \(\dfrac{1}{y}\) - \(\dfrac{1}{2}\) = 0

\(\dfrac{2xy+6-3y}{6y}\) = 0

2\(xy\) + 6  - 3y = 0

6 - y.(3 - 2\(x\)) = 0

     y.(3 - 2\(x\)) = 6

    Ư(6) = {-6; -3; -2; -1; 1; 2; 3; 6}

lập bảng ta có:

y -6 -3 -2 -1 1 2 3 6
3 - 2\(x\) -1 -2 -3 -6 6 3 2 1
\(x\) 2 \(\dfrac{5}{2}\) 3 \(\dfrac{9}{2}\) -\(\dfrac{3}{2}\) 0 \(\dfrac{1}{2}\) 1

Vì \(x;y\) nguyên theo bảng trên ta có:

Các cặp \(x;y\) nguyên thỏa mãn đề bài là: 

(\(x;y\)) = (2; -6); (3; -2); (0;2); (1;6)

 

 

22 tháng 3 2023

\(\dfrac{x}{3}-\dfrac{2}{y}=\dfrac{1}{2}\\ \Rightarrow\dfrac{2}{y}=\dfrac{x}{3}-\dfrac{1}{2}\\\Rightarrow \dfrac{2}{y}=\dfrac{2x-3}{6}\\ \Rightarrow y\left(2x-3\right)=2\cdot6\\ \Rightarrow y\left(2x-3\right)=12\)

mà `y in ZZ;x in ZZ`

`=>y in ZZ;2x-3 in ZZ`

`=>y;2x-3` thuộc ước nguyên của `12`

`=>y;2x-3 in {+-1;+-2;+-3;+-4;+-6;+-12}`

Ta có bảng sau :

`y``-1``-2``-3``-4``-6``-12``1``2``3``4``6``12`
`2x-3``-1``-2``-3``-4``-6``-12``1``2``3``4``6``12`
`x``1``1/2``0``-1/2``-3/2``-9/2``2``5/2``3``7/2``9/2``15/2`

Vì `x;y in ZZ`

nên `(x;y)=(1;-1);(0;-3);(2;1);(3;3)`

7 tháng 9 2021

\(a,\dfrac{x}{5}=-\dfrac{3}{y}\Rightarrow xy=-15\\ \Rightarrow xy=-1\cdot15=-15\cdot1=-5\cdot3=-3\cdot5\\ \Rightarrow\left(x;y\right)=\left\{\left(-1;-15\right);\left(1;-15\right);\left(15;-1\right);\left(-15;1\right);\left(3;-5\right);\left(-5;3\right);\left(5;-3\right);\left(-3;5\right)\right\}\)\(g,-\dfrac{11}{x}=\dfrac{y}{3}\\ \Rightarrow xy=-33\\ \Rightarrow xy=-3\cdot11=-11\cdot3=-1\cdot33=-33\cdot1\\ \Rightarrow\left(x;y\right)=\left\{\left(-3;11\right);\left(11;-3\right);\left(-11;3\right);\left(3;-11\right);\left(-1;33\right);\left(33;-1\right);\left(-33;1\right);\left(1;-33\right)\right\}\)

NV
14 tháng 3 2022

- Với \(x=1\) ko thỏa mãn

- Với \(x=2\Rightarrow\dfrac{2}{2y+2}\in Z\Rightarrow\dfrac{1}{y+1}\in Z\Rightarrow y=\left\{-2;0\right\}\) ko thỏa mãn

- Với \(x\ge3\)

\(x^2-2⋮xy+2\Rightarrow x\left(xy+2\right)-y\left(x^2-2\right)⋮xy+2\)

\(\Rightarrow2\left(x+y\right)⋮xy+2\)

\(\Rightarrow\left(x-2\right)\left(y-2\right)\le2\)

\(\Rightarrow y-2\le\dfrac{2}{x-2}\le\dfrac{2}{3-2}=2\Rightarrow y\le4\)

\(\Rightarrow y=\left\{1;2;3;4\right\}\)

Lần lượt thay 3 giá trị của y vào pt biểu thức ban đầu

Ví dụ: \(y=1\Rightarrow\dfrac{x^2-2}{x+2}\in Z\Rightarrow x-2+\dfrac{2}{x+2}\in Z\)

\(\Rightarrow x+2=Ư\left(2\right)\Rightarrow\) ko tồn tại x nguyên dương t/m

Tương tự...

14 tháng 3 2022

Em cả mơn thầy 

Thầy mãi đỉnh