K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2023

\(P=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+\dfrac{1}{4.6}+...+\dfrac{1}{2021.2023}\)

Ta sẽ "tách" P làm 2 phần:

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2021.2023}\)

\(B=\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{2020.2022}\)

Do đó \(P=A+B\)

Ta có \(A=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2021.2023}\right)\)

\(A=\dfrac{1}{2}\left(\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{2023-2021}{2021.2023}\right)\)

\(A=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\right)\)

\(A=\dfrac{1}{2}\left(1-\dfrac{1}{2023}\right)\) 

\(A=\dfrac{1011}{2023}\)

Mặt khác, \(B=\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{2020.2022}\)

\(B=\dfrac{1}{2}\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{2020.2022}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+\dfrac{8-6}{6.8}+...+\dfrac{2022-2020}{2020.2022}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2020}-\dfrac{1}{2022}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2022}\right)\)

\(B=\dfrac{505}{2022}\)

Từ đó \(P=A+B=\dfrac{1011}{2023}+\dfrac{505}{2022}=\dfrac{3065857}{4090506}\)

 

3 tháng 8 2015

=1-1/3-1/2+1/4+1/3-1/5-1/4+1/6+...+1/97-1/99-1/98+1/100

=1-1/2-1/99-1/98=2327/4851

19 tháng 10 2023

\(C=\dfrac{4}{1.3}.\dfrac{9}{2.4}.\dfrac{16}{3.5}.\dfrac{25}{4.6}....\dfrac{9801}{9800}=\)

\(=\dfrac{2^2.3^2.4^2.5^2.....99^2}{1.2.3^2.4^2.5^2....98^2.99.100}=\dfrac{2.99}{100}=\dfrac{198}{100}=1,98\)

26 tháng 3 2019

Nhầm ,chỉ có một + 1/3.5 thôi các bạn nhé

19 tháng 4 2018

\(\left(1+\frac{1}{1.3}\right).....\left(1+\frac{1}{2013.2015}\right)=\frac{2^2}{1.3}.....\frac{2014^2}{2013.2015}=\)\(\frac{2.3.....2014}{1.2.....2013}.\frac{2.3.....2014}{3.4.....2015}=2014.\frac{2}{2015}=\frac{4028}{2015}\)

1 tháng 8 2016

\(\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+...+\frac{1}{97.99}-\frac{1}{98.100}\)

\(=1-\frac{1}{3}-\frac{1}{2}+\frac{1}{4}+\frac{1}{3}-\frac{1}{5}-\frac{1}{4}+\frac{1}{6}+...+\frac{1}{97}-\frac{1}{99}-\frac{1}{98}+\frac{1}{100}\)

\(=1-\frac{1}{2}-\frac{1}{99}-\frac{1}{98}\)

\(=\frac{2327}{4851}\)

1 tháng 8 2016

Đặt A=1/1.3 - 1/2.4 +1/3.5 -1/4.6 +.....+1/97.99 -1/98.100

     4A= 4/1.3 -4/2.4 +4/3.5 -4/4.6 +.....+4/97.99 -4/98.100

          =(4/1.3 +4/3.5 +...+4/97.99) - (4/2.4 +4/4.6 +...+4/98.100)

          =(1/1 -1/3+1/3-1/5+...+1/97-1/99)-(1/2 -1/4 -....1/98-1/100)

         =(1/1-1/99)-(1/2-1/100)

         4A=98/99 - 99/100

         A= (98/99-99/100) :4

24 tháng 1 2022

Đề sai nha em

Nếu để như này thì phải quy đồng hết