1-1=
HELP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)=\dfrac{1}{2}\left(\dfrac{100}{101}\right)=\dfrac{50}{101}\)
\(A=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)=\dfrac{1}{2}\cdot\dfrac{100}{101}=\dfrac{50}{101}\)
1. Lan can be helped by Nam
2. Lan and Hoa will be helped by Nam
3. We should be helped by Nam
1. Lan can be helped
2. Lan and Hoa will be helped
3. We should be helped
1. We must be helped
2. We used to be helped
3. Lan has to helped
1. Nam must help us. →………We must be helped…………………………………………
2. Nam used to help us. →……We used to be helped ……………………………………………
3. Nam has to help Lan. →………… Lan has to helped………………………………………
Ta có : ( 2x - 1 )2020 = ( 2x - 1 )2021
=> ( 2x - 1 )2021 - ( 2x - 1 )2020 = 0
=> ( 2x - 1 )2020 . [( 2x -1 )1 - 1 ] = 0
=> 2x - 1 = 0 2x = 1 x = 1/2
hoặc => =>
2x - 1 = 1 2x = 2 x =1
Vậy x = 1 hoặc x = 1/2
\(\frac{1}{a}-1=\frac{a+b+c}{a}-\frac{a}{a}=\frac{b+c}{a}\)
Tương tự : \(\frac{1}{b}-1=\frac{c+a}{b};\frac{1}{c}-1=\frac{a+b}{c}\)
Nhân theo vế ta đc :
\(VT=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Áp dụng bđt Cauchy :
\(VT\ge\frac{8abc}{abc}=8\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
theo bài ra ta có:
\(\dfrac{6}{x+1}.\dfrac{x-1}{3}=\dfrac{6x-6}{3x+1}\\ =\dfrac{6x+2-8}{3x+1}\\ =\dfrac{2\left(3x+1\right)-8}{3x+1}\\ =2-\dfrac{8}{3x+1}\)
để \(\dfrac{6}{x+1}.\dfrac{x-1}{3}\) là số nguyên
=> \(\dfrac{8}{3x+1}\) nguyên
\(8⋮3x+1\\ \Rightarrow3x+1\inƯ_{\left(8\right)}=\left\{-1;1;2;-2;4;-4;8;-8\right\}\)
ta có bảng sau:
3x+1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
3x | 0 | -2 | 1 | -3 | 3 | -5 | 7 | -9 |
x | 0 | \(\dfrac{-2}{3}\) | \(\dfrac{1}{3}\) | -1 | 1 | \(\dfrac{-5}{3}\) | \(\dfrac{7}{3}\) | -3 |
mà x là số nguyên
=> x ={0;-1;1;-3}
vậy x ={0;1;-1;-3}
\(\left(x+1\right)^3+\left(x-1\right)^3=\left(x-1\right)\left(x+1\right)+4\)
\(\Rightarrow\left(x+1+x-1\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right]-\left(x+1\right)\left(x-1\right)-4=0\)
\(\Rightarrow2x\left(x^2+2x+1-x^2+1+x^2-2x+1\right)-x^2+1-4=0\)
\(\Rightarrow2x\left(x^2+3\right)-x^2+1-4=0\)
\(\Rightarrow2x^3+6x-x^2-3=0\)
\(\Rightarrow\left(2x^3+6x\right)-\left(x^2+3\right)=0\)
\(\Rightarrow2x\left(x^2+3\right)-\left(x^2+3\right)=0\)
\(\Rightarrow\left(x^2+3\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+3=0\\2x-1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2=-3\left(L\right)\\x=\dfrac{1}{2}\end{matrix}\right.\)
0
1 - 1 = 0