K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: \(A=1-\dfrac{3}{4}+\left(\dfrac{3}{4}\right)^2-\left(\dfrac{3}{4}\right)^3+...-\left(\dfrac{3}{4}\right)^{2019}\)

\(\Leftrightarrow A\cdot\dfrac{3}{4}=\dfrac{3}{4}-\left(\dfrac{3}{4}\right)^2+...-\left(\dfrac{3}{4}\right)^{2020}\)

=>\(A\cdot\left(\dfrac{3}{4}+1\right)=\dfrac{3}{4}-\left(\dfrac{3}{4}\right)^2+...-\left(\dfrac{3}{4}\right)^{2020}+1-\dfrac{3}{4}+...-\left(\dfrac{3}{4}\right)^{2019}\)

=>\(A\cdot\dfrac{7}{4}=\dfrac{-3^{2020}}{4^{2020}}+1=\dfrac{4^{2020}-3^{2020}}{4^{2020}}\)

=>\(A=\dfrac{4^{2020}-3^{2020}}{4^{2019}\cdot7}\) không phải là số nguyên

3 tháng 6 2019

Dễ thấy A > 1

Ta có:

\(A=\frac{1}{1^2}+\frac{1}{2^3}+...+\frac{1}{2018^{2019}}\)

\(< \frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{2018^2}< 1+\frac{1}{1\cdot2}+...+\frac{1}{2017\cdot2018}\)

\(=1+1-\frac{1}{2}+...+\frac{1}{2018}=2-\frac{1}{2018}< 2\)

Vì \(1< A< 2\) nên A không nguyên

9 tháng 5 2023

sai nha 

 

 

 

a: \(\dfrac{3}{4}A=\dfrac{3}{4}-\left(\dfrac{3}{4}\right)^2+...+\left(\dfrac{3}{4}\right)^{2021}\)

=>\(\dfrac{7}{4}\cdot A=\left(\dfrac{3}{4}\right)^{2021}+1\)

=>\(A\cdot\dfrac{7}{4}=\dfrac{3^{2021}+4^{2021}}{4^{2021}}\)

=>\(A=\dfrac{3^{2021}+4^{2021}}{4^{2020}\cdot7}\)

b: Vì 3^2021+4^2021 ko chia hết cho 4^2020*7 nên A ko là số nguyên

2/3A=2/3-(2/3)^2+...+(2/3)^2019-(2/3)^2020

=>5/3A=1-(2/3)^2020

=>A=(3^2020-2^2020)/3^2020:5/3=\(\dfrac{3^{2020}-2^{2020}}{3^{2020}}\cdot\dfrac{3}{5}=\dfrac{3^{2020}-2^{2020}}{5\cdot3^{2019}}\) ko là số nguyên

12 tháng 12 2018

\(\frac{3}{4}A=\frac{3}{4}-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^3-\left(\frac{3}{4}\right)^4+...-\left(\frac{3}{4}\right)^{2018}+\left(\frac{3}{4}\right)^{2019}\)

\(\frac{3}{4}A+A=\frac{3}{4}-\left(\frac{3}{4}\right)^2+\left(\frac{3}{4}\right)^3-\left(\frac{3}{4}\right)^4+...-\left(\frac{3}{4}\right)^{2018}+\left(\frac{3}{4}\right)^{2019}+1-\frac{3}{4}+\left(\frac{3}{4}\right)^2...\)( Bn tự ghi lại A do máy mình ko đủ độ rộng )

\(\frac{7}{4}A=\left(\frac{3}{4}\right)^{2019}+1\)

\(A=\text{ }\left[\left(\frac{3}{4}\right)^{2019}+1\right]:\frac{7}{4}\)

\(A=\text{ }\frac{\left[\left(\frac{3}{4}\right)^{2019}+1\right].4}{7}\)

=> A là phân số

=> A ko phải số nguyên

30 tháng 1 2019

\(A=1+2^1+2^2+...+2^{2017}\)

\(2A=2+2^2+2^3+...+2^{2018}\)

\(2A-A=2^{2018}-1hayA=2^{2018}-1\)

2; 3 tuong tu

30 tháng 1 2019

1) A = 1 + 2 + 22 + 23 + .... + 22018

2A = 2 + 22 + 23 + 24 + ..... + 22019

2A - A = ( 2 + 22 + 23 + 24 + ..... + 22019 ) - ( 1 + 2 + 22 + 23 + .... + 22018 )

Vậy A = 22019 - 1

2) B = 1 + 3 + 32 + 33 + ..... + 32018

3A = 3 + 32 + 33 + ...... + 32019

3A - A = ( 3 + 32 + 33 + ...... + 32019 ) - ( 1 + 3 + 32 + 33 + ..... + 32018 )

2A = 32019 - 1

Vậy A = ( 32019 - 1 ) : 2

3) C = 1 + 4 + 42 + 43 + ...... + 42018

4A = 4 + 42 + 43 + ...... + 42019

4A - A = ( 4 + 42 + 43 + ...... + 42019 ) - ( 1 + 4 + 42 + 43 + ...... + 42018 )

3A = 42019 - 1

Vậy A = ( 42019 - 1 ) : 3

7 tháng 3 2021

A=1/2+1/3+..+1/2019 < 1>

A= 1+1/2+1/3+..+1/2019 < 1>

A=1+1/2+1/3+..+1/2019 <1>

A=1+1/2+1/3+..+1/2019 <2018>

Vì 2018/2019 <1>

nên A=1/2+1/3+..+1/2019<1>

=> A=1/2+1/3+..+1/2019 không phải là số tự nhiên.

AH
Akai Haruma
Giáo viên
8 tháng 3 2021

Mình chưa hiểu cách bạn làm với dấu <1> cho lắm.

Theo mình hiểu thì bạn đang chứng minh $A< 1$ nên $A$ không phải số tự nhiên. Mà điều này thì sai vì $A=1+(\frac{1}{2}+\frac{1}{3}+...)$ hiển nhiên lớn hơn $1$.