K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2021

Pt hoành độ giao điểm :

2x^2 - 2mx + m - 1 = 0

∆ = (-2m)^2 - 4.2.(m-1)

    = 4m^2 - 8m + 4 

    = ( 2m - 2 ) ^2 > 0  mọi m 

=> Pt luôn cắt nhau tại 2 điểm phân biệt.

30 tháng 5 2021

a) bạn tự vẽ nha

b) pt hoành độ giao điểm: \(2x^2-2mx+m-1=0\)

\(\Delta=4m^2-8\left(m-1\right)=4\left(m-1\right)^2+4>0\)

\(\Rightarrow\) pt luôn có 2 nghiệm phân biệt

15 tháng 5 2019

b) Phương trình hoành độ giao điểm của (P) và (d) là:

- x 2  = 2mx - 5 ⇔  x 2  + 2mx - 5 = 0

Δ'= m 2 + 5 > 0 với ∀m ∈ R

Vậy trên mặt phẳng Oxy đường thẳng (d) và Parabol (P) luôn cắt nhau tại hai điểm phân biệt.

Khi m = 2, phương trình hoành độ giao điểm của (P) và (d) là:

- x 2 = 4x - 5 ⇔ x 2  + 4x - 5 = 0

Δ = 4 2  - 4.1.(-5) = 36

⇒ Phương trình có 2 nghiệm

Đề kiểm tra Toán 9 | Đề thi Toán 9

Vậy tọa độ hai giao điểm là M(1;-1) và N(-5;-25)

Xét phương trình hoành độ giao điểm 

  \(\dfrac{1}{2}x^2=3m-2\)  (Với m là tham số)

 \(\Leftrightarrow\dfrac{1}{2}x^2-3m+2=0\)  (*)

Ta có: \(\Delta=6-4m\)

Để (d) cắt (P) tại 2 điểm phân biệt \(\Leftrightarrow\) Phương trình (*) có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta=6-4m>0\) \(\Leftrightarrow m< \dfrac{3}{2}\)

  Vậy ...

 

Bạn xem lại đường thẳng (d) có sai gì không

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Lời giải:

PT hoành độ giao điểm:

$x^2-2mx-(2m+1)=0(*)$

Để (P) và (d) cắt nhau tại 2 điểm pb có hoành độ $x_1,x_2$ thì PT $(*)$ phải có 2 nghiệm pb $x_1,x_2$

$\Leftrightarrow \Delta'=m^2+2m+1>0\Leftrightarrow (m+1)^2>0$

$\Leftrightarrow m\neq -1$
Áp dụng định lý Viet: $x_1+x_2=2m; x_1x_2=-(2m+1)$

Khi đó:

$\sqrt{x_1+x_2}+\sqrt{3+x_1x_2}=2m+1$

$\Leftrightarrow \sqrt{2m}+\sqrt{3-2m-1}=2m+1$
\(\Leftrightarrow \left\{\begin{matrix} 0\leq m< 1\\ \sqrt{2m}+\sqrt{2(1-m)}=2m+1\end{matrix}\right.\)

Bình phương 2 vế dễ dàng giải ra $m=\frac{1}{2}$ (thỏa)

a: PTHĐGĐ là:

x^2-2x-|m|-1=0

a*c=-|m|-1<0

=>(d)luôn cắt (P) tại hai điểm phân biệt

b: Bạn bổ sung lại đề đi bạn

4 tháng 4 2016

quá dễ

4 tháng 4 2016

Ko khó

29 tháng 12 2023

a: Phương trình hoành độ giao điểm là:

\(x^2=2mx-m^2+4\)

=>\(x^2-2mx+m^2-4=0\)

\(\Delta=\left(-2m\right)^2-4\left(m^2-4\right)=4m^2-4m^2+16=16>0\)

=>(P) luôn cắt (d) tại hai điểm phân biệt

b: Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-4\end{matrix}\right.\)

Sửa đề: \(x_1^2-3x_1+x_2^2-3x_2=4\)

=>\(\left(x_1^2+x_2^2\right)-3\left(x_1+x_2\right)=4\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2-3\left(x_1+x_2\right)=4\)

=>\(\left(2m\right)^2-2\cdot\left(m^2-4\right)-3\cdot2m=4\)

=>\(4m^2-2m^2+8-6m-4=0\)

=>\(2m^2-6m+4=0\)

=>\(m^2-3m+2=0\)

=>(m-1)(m-2)=0

=>\(\left[{}\begin{matrix}m-1=0\\m-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)