K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2023

Set \(S=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2023}}\)

Then \(3S=1+\dfrac{1}{3}+...+\dfrac{1}{3^{2022}}\)

Hence \(2S=3S-S=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{2022}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2023}}\right)\)

\(=1-\dfrac{1}{3^{2023}}\)

\(\Leftrightarrow S=\dfrac{1}{2}-\dfrac{1}{2.3^{2023}}< \dfrac{1}{2}\) (Q. E. D)

26 tháng 12 2023

Đặt \(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2023}}\)

Ta có: \(3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\)

\(3A-A=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2022}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2023}}\right)\)

\(2A=1-\dfrac{1}{3^{2023}}\)

\(A=\dfrac{1-\dfrac{1}{3^{2023}}}{2}\)

Vì \(\dfrac{1-\dfrac{1}{3^{2023}}}{2}< \dfrac{1}{2}\) nên \(A< \dfrac{1}{2}\)

Vậy...

20 tháng 3 2023

�=322+832+1542+....+20232-120232

�=1-122+1-132+1-142+....+1-120232

�=2022-(122+132+142+...+120232)

122+132+142+...+120232<11.2+12.3+13.4+...+12022.2023

11.2+12.3+13.4+...+12022.2023=1-12+12-13+....-12023

⇒0<122+132+142+...+120232<1-12023<1

⇒2022-(122+132+142+...+120232)ko phải số tự nhiên

⇒� ko phải số tự nhiên

9 tháng 4 2023

322+832+1542+....+20232-120232"" id="MathJax-Element-1-Frame" role="presentation" tabindex="0" style="box-sizing: inherit; display: inline-table; line-height: 0; font-size: 18.08px; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">A=322+832+1542+....+20232−120232�=322+832+1542+....+20232-120232A=

1-122+1-132+1-142+....+1-120232"" id="MathJax-Element-2-Frame" role="presentation" tabindex="0" style="box-sizing: inherit; display: inline-block; line-height: 0; font-size: 18.08px; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">A=1−122+1−132+1−1(2+....+1)120232�=1-122+1-132+1-142+....+1-1202321+12+13+...+122023−1

2022-(122+132+142+...+120232)"" id="MathJax-Element-3-Frame" role="presentation" tabindex="0" style="box-sizing: inherit; display: inline-block; line-height: 0; font-size: 18.08px; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">A=2022−(122+132+142+...+120232)�=2022-(122+132+142+...+120232)A

122+132+142+.... <20232

AH
Akai Haruma
Giáo viên
15 tháng 4 2023

Lời giải:
Gọi tổng trên là $A$
$A=\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+....+\frac{1}{\frac{2023.2024}{2}}$

$=\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2023.2024}$

$=2(\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{2024-2023}{2023.2024})$

$=2(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{2023}-\frac{1}{2024})$

$=2(\frac{1}{3}-\frac{1}{2024})=\frac{2021}{3036}$

4 tháng 3

=23.4+24.5+...+22023.2024

=2(4−33.4+5−44.5+...+2024−20232023.2024)

=2(13−14+14−15+....+12023−12024)

=2(13−12024)=20213036
 

8 tháng 9 2023

Bằng nhau nha

 

9 tháng 8 2023

\(2x:\left(1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...x}\right)=2023\left(1\right)\)

Đặt \(A=\left(1+\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...x}\right)\)

\(\Rightarrow A=\left(1+\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{1}{\dfrac{x\left(x+1\right)}{2}}\right)\)

\(\Rightarrow\dfrac{1}{2}A=\left(\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}\right)\)

\(\Rightarrow\dfrac{1}{2}A=\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)\)

\(\Rightarrow\dfrac{1}{2}A=1-\dfrac{1}{x+1}\)

\(\Rightarrow A=2\left(1-\dfrac{1}{x+1}\right)\Rightarrow A=\dfrac{2x}{x+1}\)

\(\left(1\right)\Rightarrow2x:\dfrac{2x}{x+1}=2023\)

\(\Rightarrow2x.\dfrac{x+1}{2x}=2023\left(x\ne0\right)\)

\(\Rightarrow x+1=2023\)

\(\Rightarrow x=2022\)