Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n2+9n+7 là bội của n+2
=> n2+9n+7 chia hết cho n+2
=> n2+2n+7n+7 chia hết cho n+2
Vì n2+2n chia hết cho n+2
=> 7n+7 chia hết cho n+2
=> 7n+14-7 chia hết cho n+2
Vì 7n+14 chia hết cho n+2
=> -7 chia hết cho n+2
=> n+2 thuộc Ư(-7)
n+2 | n |
1 | -1 |
-1 | -3 |
7 | 5 |
-7 | -9 |
KL: n thuộc....................
a) \(-7n+3⋮n-1\)
\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow-7n+3+7n-7⋮n-1\)
\(\Rightarrow-4⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)
b) \(4n+5⋮4-n\)
\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)
\(\Rightarrow4n+5-4n+16⋮4-n\)
\(\Rightarrow21⋮4-n\)
\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
c) \(3n+4⋮2n+1\)
\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+8-6n-3+1⋮2n+1\)
\(\Rightarrow5⋮2n+1\)
\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)
d) \(4n+7⋮3n+1\)
\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)
\(\Rightarrow12n+21-12n-4⋮3n+1\)
\(\Rightarrow17⋮3n+1\)
\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)
\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)
a) Ta có: -7n + 3 chia hết cho n - 1
=> (-7n + 3) % (n - 1) = 0
=> -7n + 3 = k(n - 1), với k là một số nguyên
=> -7n + 3 = kn - k => (k - 7)n = k - 3
=> n = (k - 3)/(k - 7),
với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.
b) Ta có: 4n + 5 chia hết cho 4 - n
=> (4n + 5) % (4 - n) = 0
=> 4n + 5 = k(4 - n), với k là một số nguyên
=> 4n + 5 = 4k - kn
=> (4 + k)n = 4k - 5
=> n = (4k - 5)/(4 + k), với 4 + k khác 0
Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.
c) Ta có: 3n + 4 chia hết cho 2n + 1
=> (3n + 4) % (2n + 1) = 0
=> 3n + 4 = k(2n + 1), với k là một số nguyên
=> 3n + 4 = 2kn + k
=> (2k - 3)n = k - 4
=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0
Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.
d) Ta có: 4n + 7 chia hết cho 3n + 1
=> (4n + 7) % (3n + 1) = 0
=> 4n + 7 = k(3n + 1), với k là một số nguyên
=> 4n + 7 = 3kn + k
=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0
Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.
a) Ta có: \(\frac{8n+5}{4n+1}=\frac{\left(8n+2\right)+3}{4n+1}=2+\frac{3}{4n+1}\)
Để BT nguyên
=> \(\frac{3}{4n+1}\inℤ\)<=> \(4n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Mà \(4n+1\equiv1\left(mod4\right)\)
=> \(4n+1\in\left\{1;-3\right\}\Rightarrow n\in\left\{0;-1\right\}\)
b) Ta có: \(7^6+7^5-7^4\)
\(=7^4\left(7^2+7-1\right)\)
\(=7^4\cdot55⋮55\)
=> đpcm
`a in ZZ`
`=>6n-4 vdots 2n+1`
`=>3(2n+1)-7 vdots 2n+1`
`=>7 vdots 2n+1`
`=>2n+1 in Ư(7)={+-1,+-7}`
`=>2n in {0,-2,6,-8}`
`=>n in {0,-1,3,-4}`
`b in ZZ`
`=>3n+2 vdots 4n-4`
`=>12n+8 vdots 4n-4`
`=>3(4n-4)+20 vdots 4n-4`
`=>20 vdots 4n-4`
`=>4n-4 in Ư(20)={+-1,+-2,+-4,+-5,+-10,+-20}`
`=>4n-4 in {+-4,+-20}`
`=>n-1 in {+-1,+-5}`
`=>n in {0,2,6,-4}`
`c in ZZ`
`=>4n-1 vdots 3-2n`
`=>2(3-2n)-7 vdots 3-2n`
`=>7 vdots 3-2n`
`=>3-2n in Ư(7)={+-1,+-7}`
`=>2n in {4,0,-4,10}`
`=>n in {2,0,-2,5}`
a) đk: \(n\ne\dfrac{-1}{2}\)
Để \(\dfrac{6n-4}{2n+1}\) nguyên
<=> \(\dfrac{3\left(2n+1\right)-7}{2n+1}\) nguyên
<=> \(3-\dfrac{7}{2n+1}\) nguyên
<=> \(7⋮2n+1\)
Ta có bảng
2n+1 | 1 | -1 | 7 | -7 |
n | 0 | -1 | 3 | -4 |
tm | tm | tm | tm |
b)đk: \(n\ne1\)
Để \(\dfrac{3n+2}{4n-4}\) nguyên
=> \(\dfrac{3n+2}{n-1}\) nguyên
<=> \(\dfrac{3\left(n-1\right)+5}{n-1}\) nguyên
<=> \(3+\dfrac{5}{n-1}\) nguyên
<=> \(5⋮n-1\)
Ta có bảng:
n-1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
Thử lại | tm | loại | tm | loại |
c) đk: \(n\ne\dfrac{3}{2}\)
Để \(\dfrac{4n-1}{3-2n}\) nguyên
<=> \(\dfrac{4n-1}{2n-3}\) nguyên
<=> \(\dfrac{2\left(2n-3\right)+5}{2n-3}\) nguyên
<=> \(2+\dfrac{5}{2n-3}\) nguyên
<=> \(5⋮2n-3\)
Ta có bảng:
2n-3 | 1 | -1 | 5 | -5 |
n | 2 | 1 | 4 | -1 |
tm | tm | tm | tm |
\(A=\frac{4n+1}{2n+3}=\frac{2\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)
Vậy để A nguyên thì 2n+3\(\in\)Ư(5)
Mà Ư(5)={1;-1;5;-5}
=>2n+3={1;-1;5;-5}
Ta có bảng sau
2n+3 | 1 | -1 | 5 | -5 |
n | -1 | -2 | 1 | -4 |
Vậy n={-1;-2;-4;1}
Vì \(\frac{4n+1}{2n+3}\) là số nguyên nên \(4n+1⋮2n+3\)
\(\Rightarrow4n+6-5⋮2n+3\)
\(\Rightarrow2\left(2n+3\right)-5⋮2n+3\)
\(\Rightarrow5⋮2n+3\)
\(\Rightarrow2n+3\in\left\{\pm1;\pm5\right\}\)
Nếu 2n + 3 = 1 thì n = -1
Nếu 2n + 3 = -1 thì n = -2
Nếu 2n + 3 = 5 thì n = 1
Nếu 2n + 3 = -5 thì n = -4
Vậy \(n\in\left\{-1;-2;1;-4\right\}\)
Để 4n - 7 là bội của n + 1 thì n + 1 phải thuộc ước của 4n - 7
=> \(\frac{4n-7}{n+1}\varepsilon z\)
=> \(\frac{4n-7}{n+1}=\frac{4n+4-11}{n+1}=\frac{4\left(n+1\right)-11}{n+1}=4-\frac{11}{n+1}\)
Để 4n-7/n+1 thuộc Z => 11 phải chia hết cho n + 1 => n + 1 thuộc ước 11 là { 11;-11;1;-1)
(+) n + 1 = 11 => n = 10
(+) n + 1 = -11 => n = -12
(+) n + 1 = 1 => n = 0
(+) n + 1 = -1 => n = -2
=> N thuộc { 10;-12;0;-2}