Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: A có 5 phần tử
b: B có (2024-0):2+1=1013(số)
c: C có (101-1):5+1=21(số)
d: D={0;1;2;3;4}
=>D có 5 phần tử
e: E={0;2;...;998}
E có (998-0):2+1=500(số)
a,Nghiệm của (2\(x\) - 5)2022 là giá trị của \(x\) thỏa mãn
(2\(x\) - 5)2022 = 0
2\(x\) - 5 = 0
2\(x\) = 5
2\(x\) = 5:2
\(x\) = 2,5
b, Nghiệm của (3\(x\) + 4)2024 là giá trị của \(x\) thỏa mãn:
(3\(x\) + 4)2024 = 0
3\(x\) + 4 = 0
3\(x\) = -4
\(x\) = - 4 : 3
\(x\) = -\(\dfrac{4}{3}\)
1. Giải:
Do \(5x+13B\in\left(2x+1\right)\Rightarrow5x+13⋮2x+1.\)
\(\Rightarrow2\left(5x+13\right)⋮2x+1\Rightarrow10x+26⋮2x+1.\)
\(\Rightarrow5\left(2x+1\right)+21⋮2x+1.\)
Do 5(2x+1)⋮2x+1⇒ Ta cần 21⋮2x+1.
⇒ 2x+1 ϵ B(21)=\(\left\{1;3;7;21\right\}.\)
Ta có bảng:
2x+1 | 1 | 3 | 7 | 21 |
x | 0 | 1 | 3 | 10 |
TM | TM | TM | TM |
Vậy xϵ\(\left\{0;1;3;10\right\}.\)
2. Giải:
Do (2x-18).(3x+12)=0.
⇒ 2x-18=0 hoặc 3x+12=0.
⇒ 2x =18 3x =-12.
⇒ x =9 x =-4.
Vậy xϵ\(\left\{-4;9\right\}.\)
3. S= 1-2-3+4+5-6-7+8+...+2021-2022-2023+2024+2025.
S= (1-2-3+4)+(5-6-7+8)+...+(2021-2022-2023+2024)+2025 Có 506 cặp.
S= 0 + 0 + ... + 0 + 2025.
⇒S= 2025.
a) \(\left(x-2024\right)^{2023}=1\)
\(\Rightarrow\left(x-2024\right)^{2023}=1^{2023}\)
\(\Rightarrow x-2024=1\)
\(\Rightarrow x=2025\)
b) \(\left(2x-1\right)^5=32\)
\(\Rightarrow\left(2x-1\right)^5=2^5\)
\(\Rightarrow2x-1=2\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\dfrac{3}{2}\)
c) \(5< 2^x< 100\)
\(\Rightarrow4=2^2< 5< 2^x< 100< 128=2^7\)
\(\Rightarrow2< x< 7\)
\(a,A=2024=2^3\times11\times23\\B=8^5\times 125^6=\left(2^3\right)^5\times\left(5^3\right)^6=2^{15}\times5^{18}\\ b,Ư\left(84\right)=\left\{1;2;3;4;6;7;12;14;21;28;42;84\right\}\\\Rightarrow x\in\left\{1;2;3;4;6;7;12;14;21;28;42;84\right\}\\ x\in B\left(21\right)=\left\{0;21;42;63;84;105;126;147;168;189;210;....\right\}\)
\(A=x^2-2x+2024\)
\(A=x^2-2x+1+2023=\left(x-1\right)^2+2023\ge2023\)
Min A = 2023 khi x = 1
\(5^x.5^{x+2}=10^{2024}:2^{2024}\)
\(\Leftrightarrow5^x.5^x.5^2=\left(10:2\right)^{2024}\)
\(\Leftrightarrow5^2.\left(5^x\right)^2=5^{2024}\)
\(\Leftrightarrow\left(5^x\right)^2=5^{2024}:5^2\)
\(\Leftrightarrow5^{2x}=5^{2022}\)
\(\Leftrightarrow2x=2022\)
\(\Leftrightarrow x=1011\)
\(5^x\cdot5^{x+2}=1000...00:2^{2024}\)
=>\(5^{2x+2}=10^{2024}:2^{2024}=5^{2024}\)
=>2x+2=2024
=>2x=2022
=>x=1011